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ABSTRACT

The advent of graphics processing units (GPUs) has brought computing to new heights
with deep learning models, now deployed ubiquitously and touching the lives of many. While
GPU hardware may be ideal for deep learning, its full potential has yet to be realized in a
variety of scientific computing applications. Often, paradigm shifts in the data formalisms
and algorithmic choices used to solve scientific computing problems must take place to fully
leverage GPUs. A quintessential example of this shift has been the move towards matrix-free,
high-order finite element formulations researched under the Exascale Computing Project.
Similar groundbreaking shifts are only starting to take place in continuous energy Monte
Carlo (MC) neutron transport simulations. These simulations play a crucial role in designing
fission, fusion, and security systems that may play a pivotal role in the transition to a
decarbonized world.

This work contributes to adapting continuous energy MC neutron transport simulations
for the GPU computing era. We first summarize some changes made to other scientific com-
puting applications that led to performance gains on GPUs, which informed our independent
development of a CUDA-based version of OpenMC, an open-source continuous energy MC
neutron and photon transport code. Fortunately, the historical event-based MC simulation
modality developed extensively through the 1980s for vector computers provides an excellent
basis for GPU computing. Adapting a full-physics, continuous energy MC neutron trans-
port simulation for GPUs is a feat only completed by a few institutions across the world,
so we share some software development tricks that facilitated this task. We then identify a
variety of algorithmic optimizations that improved the performance of the baseline CUDA
application, and identify areas for further development.
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Based on experience adapting a full-physics continuous energy MC code for GPU, we
identify two pieces of the simulation which can be improved for GPU computing: resonance
upscatter handling and unresolved resonance modeling. Our new method for modeling res-
onance upscatter is based on a novel, fundamental observation regarding the resonance up-
scatter effect. The relative speed tabulation (RST) method developed by other GPU MC
researchers can be underpinned by a universal special function we have named the incom-
plete Faddeeva function, which is closely related to the incomplete Goodwin-Staton integral.
Our research develops numerical algorithms for efficient, accurate computation of the incom-
plete Faddeeva function and identifies some properties of the function. We then present a
specialized root-finding algorithm that takes advantage of the structure of the problem to
efficiently sample the resonance upscatter effect on GPUs. This obviates the need to rely
on RST tables or a zero kelvin pointwise cross section, freeing precious GPU memory while
using a GPU-friendly memory access pattern.

Continuing in the same direction, we focus on unresolved resonance region (URR) cross-
section modeling, which was shown to induce a 20% computational efficiency degradation
on GPUs. We review the requirements to model cross sections in the unresolved resonance
regime, and provide what is to our knowledge the first rigorous demonstration that URR
modeling can be reduced to a one-dimensional probabilistic model in addition to some expec-
tation values of partial cross sections conditioned on the total. Through three asymptotic
arguments covering different resonant behavior regimes, we show that the normal inverse
Gaussian distribution is the natural choice for modeling the total neutron cross-section dis-
tribution. Rather than inducing a performance degradation, we show the new URR modeling
technique in fact outperforms a pointwise infinite-dilute approach when it is used to model
the URR region.

Thesis supervisor: Benoit Forget
Title: KEPCO Professor of Nuclear Engineering
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Chapter 1

Introduction

Reactor physics is an art of approximations, with one exception to this rule: the Monte Carlo
(MC) method. Although some minor approximations exist therein, continuous energy MC
simulations stand as the gold standard for reactor physics computations. These methods
are, by construction, the closest a computer gets to mirroring the physical reality of neutron
transport. In the most basic form of MC dating to the Manhattan project [1], the direct
physical process of particle transport is followed from particle birth to death. Such a realistic
method comes with a burden of computational expense compared to legacy deterministic
methods for neutron transport, which are well-tuned approximate models used extensively
within the nuclear power industry.

In an overarching way, the goal of deterministic neutronics models is to calculate power
distributions in reactors in both steady state and perturbed conditions, along with the in-
ventories of various nuclides which accumulate in nuclear fuel as it fissions. These codes are
typically used in a cascading fashion, starting from simple or small geometric representa-
tions of a problem with fine energy discretization to capture neutron slowing down physics.
The next step traditionally simulates a reactor fuel assembly to calculate parameters such
that a diffusion equation can be used to approximate the gross movement of neutrons across
an assembly. Full core programs then solve these diffusion equations in order to determine
pin powers, assembly-averaged nuclide inventories, and behavior of the reactor in off-normal
conditions. The books [2] and [3] provide further detailed information on the menagerie of
deterministic neutron transport tools.

From the bottom of this toolchain to the top, various approximations are applied to
the neutron transport problem. Historically, the applicability of the integrated stack of
assumptions has been verified by experiment, particularly in the case of pressurized water
reactors. Many conventional assumptions, however, remain untested for the myriad proposed
advanced reactor concepts. As such, Monte Carlo models which are exact, in a sense, serve
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as a reference point for proving veracity of a deterministic model of an untested reactor
concept, reducing the need for neutronic experimentation involving critical experiments, hot
cells, and so much more. In transients though, Monte Carlo calculations are not as frequently
used.

With the publication of Sjenitzer’s thesis in 2013 [4], the reactor physics community
saw for the first time practical transient Monte Carlo on reactor-relevant timescales without
the application of primitive approximations like the quasistatic method [5] which had been
used for fifty years prior. Sjenitzer’s methods have been implemented in a few Monte Carlo
codes today, and have been tested against transient benchmarks and experiments such as
C5G7-TD [6] and the SPERT tests [7].

In 2018, Shaner’s thesis [8] presented a few novel improvements for transient MC, but,
most relevant to this discussion, parts with a few estimates regarding the future of transient
MC. Shaner predicted, extrapolating from his results, that a 0.2 exaflop computer could
perform a full core transient analysis of a PWR overnight, using around fifty million core
hours. A 0.2 exaflop computer was built at the Oak Ridge National Laboratory that same
year in 2018, Summit [9].

Yet, with near-exascale compute resources now available, a dearth of literature on execu-
tion of Monte Carlo calculations on pre-exascale machines has been published. Forrest Brown
acutely predicted the burden of the exascale, post-Moore’s-law world in his 2010 paper [10].
By observing an exascale computer would use nearly a half gigawatt of electricity using high
performance computing technology of the day, Brown predicted the dominance of graphics
processing units (GPUs) and other specialized architectures in the future. While Moore’s
law has not strictly ended yet in terms of available arithmetic performance on modern CPUs,
it has ended with respect to the effective memory bandwidth, which is a potentially limiting
factor for performance in Monte Carlo neutronics calculations. As we can see in Figure
1.1,the pace of CPU memory bandwidth growth rate has slowed, whereas server GPUs have
continued to increase bandwidth at nearly the same exponential pace as CPUs in the 1980s
and 1990s.

Harnessing the full memory bandwidth of GPUs for Monte Carlo particle transport re-
quires carefully designed programming. As we will explore in the following sections, some-
times initially counter-intuitive programming changes that add more work to the calculation,
such as sorting an array of particles, may greatly enhance code performance on GPUs. Tap-
ping into that massive memory bandwidth requires a program designed with care. The
overarching trend toward GPUs in scientific computing was predicted in [11] and [12], and
today, of the five supercomputers from the United States making the top ten of the Top500
[13] list, all are based on GPUs. To keep pace with other high performance scientific soft-
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Figure 1.1: The memory bandwidth over time for CPUs (x marker) and GPUs (o marker)
over time.

ware applications, the algorithms comprising the continuous energy MC neutron transport
method must be redesigned.

1.0.1 Monte Carlo for neutral particle transport

How a sampling method can be used to solve partial differential equations such as the linear
Boltzmann equation may not be immediately obvious. This approach relies on converting the
Boltzmann equation’s solution to an integral, rather than differential form. If the problem
can be cast as a sampling process, we call it a Monte Carlo solution.

We now present a simple derivation of the Monte Carlo particle transport algorithm from
the neutral particle Boltzmann equation, setting the stage for the later developments in this
thesis. This derivation makes use of the fact that if an integrand is replaced by a random
field with an expectation field equal to the original integrand, the expectation value of the
random integral matches the integral of interest. A related but less intuitive derivation can
be found in [14] as well.

We start with a simple case to illustrate, impressionistically, Monte Carlo. Suppose one
wishes to evaluate the definite integral via Monte Carlo:

I =

∫ 1

0

x2 dx (1.1)
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A conventional Monte Carlo integration as presented in [14] would identify this integral
as a product of a probability distribution π(x) on [0, 1] with some arbitrary function of x,
specifically:

I =

∫ 1

0

x2
π(x)

π(x)
= E[x̂2/π(x̂)] (1.2)

Where x̂ is a random variable with distribution π(x), and E is the expectation value operator.
One then carries out this integration by sampling from π(x) some number of times and
approximating the expectation value above by a simple arithmetic mean.

To move towards how this method can be used to solve partial differential equations, an
alternative but equivalent procedure instead replaces the above integrand by a random field
consisting of a stochastically placed Dirac delta function:

x2 = E[δ(x− x̂)x̂2/π(x̂)] (1.3)

Where x̂ is a scalar random variable distributed according to π(x̂). That the equality holds
can be easily shown by the linearity of integration.

So, we can approximate the integrand by an arbitrary random field with an expectation
field matching the integrand:

Î =

∫ 1

0

δ(x− x̂)x2/π(x̂) dx = x̂2/π(x̂) (1.4)

where it is again easily verified that E[Î] = I, and we again approximate the expectation
value by a finite arithmetic mean.

Now we turn to the stationary, fixed-source neutron transport equation, the keystone of
reactor physics:

Ω̂ · ∇φ+ Σφ = q +

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(Ω̂
′ → Ω̂, E ′ → E)φ|Ω̂′,E′ (1.5)

With Ω̂ ∈ S2, the unit sphere S2 ⊂ R3, E ∈ R+, r ∈ U ⊂ R3, U being the spatial domain of
interest. The function φ : U ×R+×S2 → R+ is the angular flux. The function Σ : U ×R+ is
called the total cross section. q is a function mapping between the same spaces as φ, and is
called the angular source. We also impose vacuum boundary conditions to simplify coming
arguments:

φ(r, Ω̂, E) = 0 ∀r ∈ ∂U, Ω̂ · n̂ ≤ 0 (1.6)

with n̂ being the unit normal at r ∈ ∂U . ∂U is the boundary of U as defined in [15]. For
simplicity, we can simply lump the fission term, if present, as an isotropic contribution to
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scattering above if that is present in a system. The results are identical. For more, the
works [3], [16] cover the physical situations covered by this equation in greater detail. We
also define the scattering operator S : U × R+ × S2 → U × R+ × S2

S(φ) =
∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(Ω̂
′ → Ω̂, E ′ → E)φ|Ω̂′,E′ (1.7)

Note that S is a linear operator as per the linearity of integration.
Next, defining:

Ω̂ · ∇φ0 + Σφ0 = q (1.8)

Ω̂ · ∇φ1 + Σφ1 = S(φ0)

Ω̂ · ∇φ2 + Σφ2 = S(φ1)

Ω̂ · ∇φ3 + Σφ3 = S(φ2)

. . .

We can see that the function sum
∑∞

i=0 φi, if it converges uniformly, solves the transport
equation. This can be verified by summing all of the above equations, and using linearity
of integration and differentiation to identify the summed quantity as solving the equation
we wish to solve. Each term φ0, φ1, etc. has the physical interpretation of being uncollided
neutrons, singly collided neutrons, doubly and so on. Of course some rigor could be included
in this argument, but the conclusions remain unchanged. The goal here is to explain as
intuitively as possible.

To obtain the Monte Carlo algorithm, we note that the above sequence of equations is
simply a sequence of fixed-source, zero scattering transport problems. This problem with
vacuum boundary conditions has a closed-form solution for each φ0, φ1, etc. The first is:

φ0(r, Ω̂, E) =

∫ s

0

e−τ(r,r−Ω̂s′)q(r − Ω̂s′, Ω̂, E) ds′ (1.9)

Where s is the smallest possible non-negative value such that:

r − Ω̂s ∈ ∂U (1.10)

and τ is the optical thickness :

τ(r, r − Ω̂s′) =

∫ s′

0

Σ(r − Ω̂s′′) ds′′ (1.11)
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In words, to find the angular flux moving in the direction Ω̂ at any point, we integrate all of
the attenuated source behind that point moving along the line r− Ω̂s′ until the boundary is
reached, which has zero incident flux as previously stipulated. This is a simple application of
the method of characteristics as described in any textbook on partial differential equations
[15], [17].

In order to approximate the problem via Monte Carlo, we first suppose that the source q
satisfies the properties of a probability distribution, namely being non-negative and having
an integral over all phase space U ×R+×S2 equal to unity. If the source is not normalized,
one can simply divide the whole of the transport equation by the total source, and later
multiply the solution by that "source strength". We can then replace q with this random
field, using the aforementioned fact about random fields:

q̃ = δ(
˜̂
Ω, Ω̂)δ(r̃ − r)δ(Ẽ − E) (1.12)

With the δ function on the unit sphere δ( ˜̂Ω, Ω̂) being defined as in [16], and the random
variables ˜̂

Ω, r̃, Ẽ being distributed according to the multivariate distribution q( ˜̂Ω, r̃, Ẽ). We
can then verify this stochastic approximation preserves the correct expectation field:

E[q̃] =
∫ ∞

0

dẼ

∫
4π

d
˜̂
Ω

∫
U

dr̃δ(
˜̂
Ω, Ω̂)δ(r̃ − r)δ(Ẽ − E)q( ˜̂Ω, r̃, Ẽ) = q(Ω̂, r, E) (1.13)

So we then have the following stochastic estimate of φ0:

φ̃0(r, Ω̂, E) =

∫ s

0

e−τ(r,r−Ω̂s′)δ(
˜̂
Ω, Ω̂)δ(r̃ − r)δ(Ẽ − E) ds′ (1.14)

This is simply an exponentially attenuating beam originating at the location r̃ moving in the
direction ˜̂

Ω. This beam-like function similarly is now approximated by a stochastic estimate.
It nominally appears that we can select a value τ̃ from an exponential distribution, and simply
approximate the above by:

˜̃φ0(r, Ω̂, E) = δ(
˜̂
Ω, Ω̂)δ(r̃ +

˜̂
Ωx− r)δ(Ẽ − E) (1.15)

Where x is calculated by inverting the optical pathlength function:

τ̃ = τ(r̃, r̃ + x
˜̂
Ω) (1.16)

However, we in fact may not naively sample from the exponential distribution above. Because
the problem boundaries are finite, the exponential appearing in Eq. 1.14 is in fact not a
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normalized probability distribution. As such, we should instead compute:

pNL =

∫ s

0

e−τ(r,r−Ω̂s′) ds′ (1.17)

which we can identify as the probability the source particle did not leak from the geometry.
Thus, if we sample τ̃ from the distribution:

1

pNL
e−τ (1.18)

with probability pNL, and put (x calculated as before):

˜̃φ0(r, Ω̂, E) = δ(
˜̂
Ω, Ω̂)δ(r̃ +

˜̂
Ωx− r)δ(Ẽ − E) (1.19)

else with probability 1− pNL put:

˜̃φ0(r, Ω̂, E) = 0 . (1.20)

It is at this point that we calculate the scattering source for the equation governing φ1. We
calculate this as:

S( ˜̃φ0) =

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(Ω̂
′ → Ω̂, E ′ → E)δ(

˜̂
Ω, Ω̂′)δ(r̃ + ˜̂

Ωx− r)δ(E ′ − Ẽ) (1.21)

Which then simplifies to:

S( ˜̃φ0) = Σs(
˜̂
Ω→ Ω̂, Ẽ → E)δ(r̃ +

˜̂
Ωx− r) (1.22)

This is a spatial dirac delta source with a scattering source distributed over the unit sphere,
and is also distributed in energy. We sample from this a point estimate of the flux at a given
energy and angle, and repeat the entirety of the previous process iteratively. Figure 1.2 shows
how this procedure looks like with a shaded source region on a finite domain, making two
point approximations of the flux, and culminating in a particle leak. The prior discussion
does not allow particles to be absorbed, having their history terminated permanently. This is
simply a selection of the zero function with a probability equal to the absorption probability.

In addition, the flux estimates are only collision estimates, although track-length flux
estimates can be derived as a limit of a delta tracking process [14]. To derive track-length
flux estimates Eq. 1.19 can be modified. Rather than sampling a Dirac delta with exponential
distribution in the optical path length, the same can be one if τ < τ̂ else zero. In other words,
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Figure 1.2: A neutron path through the domain U with shaded source q, using variables
presented here. Collision flux estimates ˜̃φ0 and ˜̃φ1 are made for this track.

the exponential distribution can be approximated as a superposition of constant functions
(assuming x ≥ 0):

e−x =

∫ ∞

0

H(x̂− x)e−x̂ dx̂ . (1.23)

This “track length” estimator has the advantage that contributions to samples will be drawn
in regions of low cross section more frequently than in the collision estimator. Figure 1.3
shows how these constant estimates average to match the exponential distribution required
by the linear Boltzman distribution. For the collision flux estimator, the samples are instead
Dirac deltas which are situated at the end of each of the line samples shown in Fig. 1.3.

Just as sampling from an arbitrary distribution could be carried out in Eq. 1.2, similar
approaches can be applied to sampling the source in space, energy, or angle, so long as weight
corrections are applied. Biased sampling can be used to reduce the variance of the samples of
the simulation if the biasing distributions are chosen judiciously, and other works for example
in [14] or by searching for the term “importance sampling” in any nuclear engineering journal.
When biased sampling is not applied, the algorithm is called analog.

A convenient property of the exponential distribution is memorylessness, which states
that for an exponentially distributed random variable X with rate parameter λ:

P [X > s+ t | X > s] = P [X > t] . (1.24)

In other words, if a particle is stopped before reaching the end of a sampled track length
as exhibited in the top of Fig. 1.3, the exponential distribution can simply be sampled
again and the particle be allowed to follow that track length without regard to prior track
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Figure 1.3: The tracklength approach to sampling flux averages piecewise constant samples
(above) to produce exponentially distributed behavior on average.

length sample. Because in most practical nuclear engineering problems, the cross sections
are spatially piecewise constant. Therefore, if a track crosses a material boundary, the total
traversed track length need not be considered: a new track length may be sampled with the
rate parameter Σt without explicitly integrating the track length using Eq. 1.11.

All of the aforementioned problems can be stitched together to define the history-based
Monte Carlo algorithm for simulation of neutral particle transport, shown in Algorithm 1.
As the track is followed through the problem, the aforementioned samples of the flux are
accumulated on a mesh, dividing the phase space arbitrarily. The data structures used
to accumulate the fluxes or functionals of the flux are called tallies, and the partitioning
of phase space is typically done using a tensor product of a spatial mesh with an energy
mesh. These individual meshes are typically called filters. Figure 1.4 shows how samples of
the angular fluxes can be averaged together to estimate fluxes on a mesh on a nuclear fuel
assembly problem.

The fixed source, linear Boltzmann equation does not describe chain-reacting systems
like a nuclear reactor. The problem is instead framed as a generalized eigenproblem:

Ω̂ · ∇φ+ Σφ =

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(Ω̂
′ → Ω̂, E ′ → E)φ|Ω̂′,E′+

1

4πk

∫ ∞

0

dE ′
∫
4π

dΩ̂′ν(E ′)χ(E ′ → E)Σf (E
′)φ|Ω̂′,E′ (1.25)
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for each particle history do
generate particle from source q;
while particle not escaped or absorbed do

sample distance to collision in material;
sample distance to material interface;
compute distance to cell boundary;
advance minimum of collision and crossing distance;
if Minimum distance was to collision then

collide, sampling new energy E and angle Ω̂;
compute new macroscopic cross section Σt at new energy;

end
if Minimum distance was to boundary crossing then

compute new macroscopic cross section Σt in new material ;
end
if particle escaped spatial domain then

end particle history;
end
if particle absorbed then

end particle history;
end

end
end

Algorithm 1: Fixed source, history-based Monte Carlo algorithm
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where ν is called the fission multiplicity, Σf is the fission cross section, and χ is the fission
neutron spectrum. χ is often modeled as being independent of the incident energy, although
continuous energy Monte Carlo codes typically model the dependence of this on incidence
energy. The eigenvalue problem can be reduced to a series of fixed source problems in which
each fixed source is defined as the set of fission sites created in the previous iteration.

(a) A pressurized water reactor fuel assembly
with superimposed neutron tracks.

(b) Fluxes estimated by averaging many sam-
ples.

Figure 1.4: Flux samples generated with Monte Carlo sampling can be accumulated to
approximate the Boltzmann equation’s solution without bias.

Armed with an understanding of how Monte Carlo neutral particle simulation works, we
can almost understand the shortcomings associated associated with running Algorithm 1 on
GPUs. The peculiarities of GPU computing will provide the context for this.

1.0.2 GPUs and SIMD

GPUs bear a semblance to earlier vector computers, which were available in centralized se-
tups up through the early 1990s. These were available in the early days of Monte Carlo
neutron transport, and it has been well-known since the work of [18] in 1973 that the con-
ventional Monte Carlo algorithm of following neutrons from birth to death sequentially
performs dismally on vector computers. A spectrum of modified algorithms for event-based
Monte Carlo (as opposed to history-based) have been developed since then, e.g. the naval
lab code RACER3, which achieved a tenfold speedup using event-based mode versus scalar
instructions on a vector machine, as documented in [19]. To understand the performance
limitations of an event-based Monte Carlo algorithm, some further background on these
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Figure 1.5: Rough sketch of typical CPU vs. GPU architecture, image from [23].

architectures is in order.
Flynn’s taxonomy of computer architectures [20] broadly classifies the commonly used

shared memory parallel computer architectures as either SIMD or multiple instruction, mul-
tiple data (MIMD). Both of these parallelism modes are encountered on the modern desktop.
Multicore computer processors realize the MIMD approach in that each core can execute dif-
ferent instructions on multiple data simultaneously. Typically, each of these cores can realize
parallelism individually by the use of special SIMD instructions which carry out the same
operation on several adjacent pieces of data. These operations are typically restricted to
addition, multiplication, or rudimentary logic operations. By using these special instruc-
tions on modern processors, throughput of numerical programs can be increased by a factor
roughly approaching the SIMD data length. For more information on parallel computing in
the context of nuclear engineering, the chapter [21] expounds the aforementioned concepts
further.

GPUs are often considered as operating using a SIMT, or single instruction multiple
thread, model [22] which means that many threads can carry out a single instruction at a
time on arbitrary data. This is distinctly more flexible than SIMD. In SIMT, a full-featured
instruction set may be executed on data in parallel; this contrasts from CPUs where specific
instructions must be used to leverage SIMD. Because of this, branching statements can be
used in parallel with ease, and although each branch must execute in lockstep, thus degrading
performance, some degree of parallelism is achieved. Fig. 1.5 contrasts the general layout
of a typical CPU and a typical GPU; the biggest takeaway being that many GPU compute
cores (green) share a single instruction unit (yellow).

The group of threads each executing an instruction is called a warp, and there are thirty-
two threads per warp on an Nvidia GPU [23]. As previously mentioned, it is commonplace for
a warp of threads to encounter a point in the program where some threads enter an "if" block,
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Figure 1.6: In this example, some threads have condition=true, and others not. The
branching statement must be executed in lockstep, with x’s indicating idle threads.

and others do not. This situation is called warp divergence, and should be avoided if possible
since it degrades the computational throughput of the GPU. Figure 1.6 illustrates warp
divergence on some branching code. This thesis work identifies Monte Carlo algorithms for
neutron transport that can be tuned to reduce warp divergence, thus enabling more efficient
utilization of the hardware of modern exascale computers, GPU-equipped machines, and
SIMD units on modern CPUs.

The previous paragraph is an oversimplification but serves as a reasonable model of how
GPU programs should be written. In reality, modern GPUs operate in a MIMD manner,
heavily flavored by SIMT. Since the Volta architecture GPUs released in 2017, Nvidia GPUs
are capable of independent thread execution [24]. As a result, Fig. 1.6 does not adequately
represent the situation. The threads may in fact execute the different code paths simul-
taneously as long as all the code fits into the thread block’s instruction cache. Therefore,
without considering the complicating factor of memory access, sufficiently “shallow” condi-
tional branches incur negligible performance penalty. A syncwarp function is provided in
GPU architectures with independent thread execution that behaves similarly to a threading
barrier used in CPU code.

Despite the capability of independent thread execution, diverged thread behavior can
still seriously impact GPU program performance. This could come as a result of instruction
cache misses, which are hard to quantify the behavior of due to the proprietary nature of
GPU hardware implementation. Similar to execution of code, memory accesses can also
be diverged. Fig. 1.7 shows the desirable pattern to access memory in on GPUs, and Fig.
1.8 shows a memory access pattern which may yield poor performance. The randomized
nature of Monte Carlo simulations can make it very difficult to avoid uncoalesced memory
accesses. Threads usually operate in groups of 32 called warps, and in the case of coalesced
memory accesses, memory accesses happen at the maximum bandwidth. For a purely unco-
alesced memory access, the memory accesses can become completely serialized, completing
in an order of magnitude longer time. Intermediate situations provide a blend between the
uncoalesced and coalesced speed.

Again, the previous paragraph is an oversimplification of reality. Modern GPUs have
less trouble with the order that threads access memory in, and more trouble with memory
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Figure 1.7: A quintessential coalesced memory access. t0, t1, etc. indicate threads 0, 1, ...
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Figure 1.8: A quintessential uncoalesced memory access.

accesses from threads to locations in memory scattered far apart. This explains why sorting
the particle cross-section look-up queue can greatly enhance continuous energy MC code
performance, and also explains why caching microscopic cross sections counter-intuitively
hurts performance. Both of these situations will be explained in greater detail in later text.

A more nuanced understanding of memory accesses on GPUs, which are currently the
limiting aspects of continuous energy MC codes, requires understanding the types of memory
on a GPU. Global memory is the number reported that represents GPU RAM, and can be
accessed from any thread albeit with a considerable amount of latency. Shared memory can
be accessed an order of magnitude faster, but may only be shared amongst blocks of threads
and is of more limited size, tens of kilobytes. Thread blocks are groups of thread warps
that range between the warp size and ten or more warps, around 320 threads. Constant
memory is optimized for broadcasting to many different threads across many blocks; this is
ideal for storing run-time settings such as whether to toggle different sampling approaches
like weighting in lieu of absorption in an MC code. Texture memory is optimized for 2D
memory accesses like used in sampling textures on 3D models. Lastly, registers are the
storage immediately local to each thread, and cannot be shared across threads with the
exception of warp primitives, but explaining warp primitives is beyond the scope of this
introduction.

Thread block size was introduced in the context of shared memory. The optimal block
size for fastest execution of an application depends on the application in question. While
GPU memory access latency (a different concept from bandwidth) may be relatively slow,
GPUs have the ability to over-saturate the system with more thread blocks than can simul-
taneously execute. Latency hiding is the strategy GPUs automatically employ of switching
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to other thread block contexts when waiting through the latency period of memory access.
By switching to other thread blocks while waiting on latency, the delays induced by memory
latency can be effectively hidden. The amount of blocks which can simultaneously run are
governed by limitations on the total number of registers and the total amount of shared mem-
ory. Choosing how these resources are divided up to thread blocks can imply tremendous
performance differences.

Occupancy is related to the number of threads able to run on a GPU for a given piece
of code relative to the theoretical maximum number of threads that could be executing on
a GPU. For continuous energy MC codes, our experience has suggested occupancy fractions
are typically around 40%, far from ideal. This originates as a result of the complexity of
the code, which requires a large number of registers. An important technique in programs
bound by memory latency is intentionally using more registers and decreasing occupancy in
an effort to reduce the number of global memory transactions [25].

The requirement for threads to execute similar code paths and access nearby memory
nearby implies that the conventional history-based algorithm tends to underperform. As
particles randomly cross surfaces, enter materials with varying numbers of nuclides, and
scatter to different energies, the data and code needs of each particle becomes more and more
different. Eventually, all the particles executing in parallel on each GPU thread would be
executing entirely different instructions, leading to serialized memory accesses and constant
instruction cache misses. A new paradigm outside following each particle from birth to death
on each thread is required.

1.0.3 Event Monte Carlo

In event Monte Carlo, a few approaches have been proposed, the most promising being
stack-based event Monte Carlo as proposed by Brown [19]. Generally, rather than dealing
with a single particle at a time, event Monte Carlo deals with an array of particles. First,
source locations and directions of many particles in a particle array are determined. After
sampling the distance each neutron should travel, which has a known distribution, particles
in the array advance until they collide or cross a boundary. The computer then treats
boundary crossings of each neutron for those entering new regions, and similarly processes
collision physics of colliding neutrons. After that, the algorithm repeats, and particles are
advanced again, until all neutrons either leak from the geometry or are absorbed. Over the
course of the algorithm, the various events such as collisions, boundary crossing, and passage
through various parts of the geometry may be tallied according to the neutron properties,
e.g. energies, directions, or positions, for output to the analyst. Algorithm 2 presents the
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basic functioning of the event-based tracking algorithm.
In practice, a subtlety arises: how should one mark which particles in the particle array

are yet to collide, cross a surface, or do something else? Early work shuffled particle arrays
such that all colliding particles are contiguous, all crossing surfaces are contiguous in the
array, etc. This shuffle requires a burdensome amount of computation, however, which
motivated the stack-based approach, where one simply records indices of particles about to
undergo a given event.

The stack-based event algorithm can take on a whole spectrum of possible implementa-
tions. [26] describes a few of the possibilities. For instance, one code maintained a separate
event queue for each of the geometric cells in a problem. Another code kept a separate event
queue for each of the possible reactions a given neutron could undergo. Considering this,
the vast range of possible stack-based event algorithms can be clearly seen. One could, in
principle, construct a stack-based event code that handles each surface type crossing, each
reaction, perhaps even each range of energies of various particles separately. But the man-
agement of all these queues comes with its own computational cost, so a balance must be
struck. The optimal balance will depend on the hardware characteristics of the computer.
Writing each permutation of event queue layouts, however, is inefficient.

The creation of a production level event-based Monte Carlo codes can require thousands
of person-hours, and even more for subsequent verification and validation [26]. All loops in
the program, and similarly data structures, must be adjusted to match the new layout of the
event-based code [27]. Clearly then, if the optimal granularity of a given event depends on
hardware characteristics of a system and an immense effort is required to create a realization
of a given event-based algorithm, a given code will perform optimally on the platform it was
designed for, but underperform on many others.

The work [27] sought to estimate the efficiency of an event-based MC code relative to
history-based tracking. This study used empirical estimates of the time to complete various
particle events from OpenMC, and predicted the performance of an event-based MC code
based on that. The conclusion was that event MC codes can only degrade performance,
under the assumptions in the study. However, the study did not account for the intricate
sensitivity of GPU memory accesses to the access pattern. In fact, if the event timings
were adjusted to represent the upper bound memory bandwidth and a model of cache hits
implemented, a model such as this should predict event mode to outperform history mode
as has been observed empirically in codes like [28], [29].

Lastly, every time a code adds a new feature, this potentially increases the divergence
of each event. For instance, in a code using a monolithic collision processing kernel, adding
new collision physics types adds more thread divergence to that kernel, like in Figure 1.6.
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while particles remain do
generate all particles in batch from source;
put particle indices to cross section lookup queue;
while particles remaining in batch do

for Choose event E in (collision, flight, material interface crossing, cross
section lookup) from longest queue do

if E == collision then
collide;
handle collision tallies;
add particle to cross-section lookup queue;
if particle absorbed then

kill particle;
end

end
if E == flight then

advance particle, accumulate track length tallies;
if particle collided then

add particle to cross-section lookup queue;
end
else if particle leaked then

kill particle;
end
else

add particle to material interface crossing queue;
end

end
if E == material interface crossing then

determine cell crossing to from neighbor list;
lookup new material;
add particle to cross-section lookup queue;

end
if E == cross section lookup then

Loop over nuclides, get microscopic cross sections;
Save particle macroscopic cross section;

end
end

end
end

Algorithm 2: Event-based Monte Carlo algorithm
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For production Monte Carlo codes like MCNP6 [30] seeking to support numerous particle
types and a plethora of physics, the book-keeping associated with many event queues could
become burdensome. The former would become more divergent with the addition of each new
collision type, and the latter would require large programming efforts to update the queue
processing code whenever new physics is added. As a result, we foresee that most practically
used GPU MC codes will be custom tailored for specific applications in the foreseeable future,
for example the PRAGMA [31] code which will be reviewed in the next section.

1.1 Review of Previous GPU Monte Carlo Projects

1.1.1 Generic GPU Background Material

In addition to ubiquitous application in deep learning, GPUs have been employed in success-
fully accelerating a variety of other scientific computing applications. A common theme in
distilling the literature on scientific computing by way of GPU is that algorithms, which may
work well, fail to provide optimal or at times remotely acceptable performance on GPUs.
This happens as a result of the fundamentally different threading model on GPUs, funda-
mentally different memory access mechanisms, and the corresponding optimal floating point
to memory access ratios to obtain peak performance to solve a given problem. We’ll first
explore how other applications have been modified to obtain excellent GPU performance,
then transition to how Monte Carlo neutron transport algorithms can be tailored for GPU.

Goddeke’s 2011 dissertation [32] is one of the early works detailing the conceptual shift
required to achieve optimal GPU performance in finite element PDE solvers. Goddeke
suggests the use of finite elements of high order that admit a tensor product basis. This
allows a sum factorization trick in evaluating the action of the system matrix on the unknowns
vector. In general, matrix-free techniques using higher order elements prove to be the best
choice on GPUs, whereas first or second order elements using a sparse matrix representation
of an FEM problem are most commonly used in CPU-based FEM codes such as MOOSE
[33].

[34] discusses the acceleration of Runge-Kutta methods on GPUs. Again, in contrast
to converting scientific computing applications from for example single to for multithreaded
CPUs, fundamental programmatic changes were required. In this case, discrepancies in the
amount of work distributed to each thread have to be mitigated, as on the GPU, significant
discrepancies in the amount of work assigned to each thread cause all threads to wait on the
longest executing task. This work explores some task distribution strategies in the context
of Runge-Kutta methods that mitigate this effect. In particular, by assigning each thread
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multiple tasks, the distribution of task length can be made more narrow. This was shown
to improve performance by an order of magnitude.

[35] explores ray tracing to simulate photon passage through vegetation canopies. Again,
in this application, the best parallelization technique avoided a naive mapping of one sampled
photon to each thread. Instead, it was shown that using one photon per thread block, and
using threads within the block to compute ray-surface intersections over a large number of
distance-to-boundary checks, provided the optimal task layout.

[36] details experience in optimizing Monte Carlo computations of atmospheric balloon
landing locations. A key takeaway from this work is that “a good understanding of the phys-
ical problem permits one to optimize the data locality and hence to improve the performance
of the parallel application.” Indeed, this same theme echoes throughout the latter chapters
of this thesis in which we design modifications to typical continuous energy Monte Carlo
neutron transport operations that aim to enhance data locality.

In the world of nuclear engineering, plenty of work has been done on GPU acceleration
of characteristics-based deterministic codes, starting from the work on OpenMOC [37]. The
later work on nTRACER [38], [39] highlights the importance of reorganizing nested data
structures to fit contiguously in memory, this case pertaining to resonance self-shielding
models and the hierarchical ray data. In addition, a specialized linear solver was developed
again to optimize the memory access patterns for GPU-friendly operation.

Similarly, advancements have been made in making pin-wise full-core nodal calculations
more practical via GPU acceleration [40]. In this case, the code was designed from the bottom
up with the niceties of GPU programming in mind. A specialized cross section compression
algorithm was devised to handle the memory limitations. The code serves as an advancement
towards practical reactor design with pin-by-pin diffusion calculations because hundreds of
statepoint evaluations are required for core design, so accelerating the calculation to make
this feasible on a single workstation serves as a valuable contribution.

More work has been carried out building an MOC code designed specifically for GPU
execution [41]. From our read of this work, no unique algorithms designed for GPU have
been developed as part of this project so far. However, if the focus on unstructured mesh
MOC continues, we expect some unique developments will be discovered in the coming years.

Very recently, [42] drives home again the importance of GPU-specific modifications to
obtain optimal performance in a finite element framework, MFEM [43]. Again, this work
introduces novel algorithmic changes that enhance performance on GPUs.

Related to the developments in the MOC field, the “immortal ray” technique was recently
proposed for improved utilization of GPU resources [44]. The new method was shown to
perform equivalently to the conventional random ray algorithm on CPU architecture, but
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demonstrated a clear advantage on GPU. Again, we see the recurring theme that new ways
of looking at a problem are required to obtain optimal or even acceptable performance on
GPUs.

Another work presented a unique means of solving the transport equation that works
well with the transport equation. In this case, the particle scattering source was discretized
on a mesh, the GPU was used to source individual straight lines of flight from the scattering
source in a randomized fashion [45]. GPUs were also used to apply nonlinear diffusion
acceleration in this work. The method in this case was applied to a simplified one-dimensional
problem, and we see no barriers preventing generalization of this method to more complex
multidimensional problems. While the method is indeed GPU-friendly, it presents no clear
advantage over random ray or the immortal ray method.

Digesting all of the above together, we can observe that bringing scientific computing to
GPU architecture is a heavier task than a simple “port”. Fundamental algorithmic changes
are required in many cases to achieve optimal performance.

1.1.2 Performance portability frameworks

It has been said that performance is not portable [46]. In parallel with the rise of GPU
computing, a variety of performance portability frameworks have arisen. Applications devel-
oped for platform-specific GPU acceleration often cannot be converted to use other hardware
without some potentially high effort. Some tools have been developed to automatically con-
vert CUDA code for other platforms [47]. Other approaches to performance portability
abstract away parallelizable operations, and toggle between various methods of execution in
the backend. Kokkos [48], RAJA [49], and OCCA [50], [51] are just three examples among
many.

With tools like this existing, why write platform-specific code like CUDA in the first
place? In this project, we opted to use CUDA for a few reasons. All of these reasons,
however, pertain to the technological maturity of the tool-chain. When this research project
started, no full-featured, continuous energy Monte Carlo neutron transport code had yet been
run on GPUs in a fashion that yields impressive speedups on par with the advancements in
other fields. WARP [52] had achieved modest performance, but not a speedup substantial
enough to justify the performance per dollar or watt that motivates GPU use in other fields
like machine learning.

In the author’s opinion, attempts at bringing new scientific computing applications to
GPU should use the most mature tool-chain possible initially with a focus on performance
portability coming as a step beyond performance alone. Using the most mature possi-
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ble framework is in line with the guidance presented in [53]. Of course, the right tool
for this job is CUDA as a result of its deeply detailed documentation, mature debugging
and profiling utilities, and dedicated compiler. To our knowledge, no profiling tool tap-
ping into GPU performance counters is available for GPU performance portability frame-
works. Even using CUDA, our early attempts at GPU ports of OpenMC ran into errors
fundamentally related to the compiler, for example the workaround introduced by the au-
thor in https://github.com/mpark/variant/pull/73, which had knock-on impacts to Py-
TORCH https://github.com/pytorch/pytorch/pull/33230. If even the CUDA compiler
still failed to parse complex C++ in 2020, using less mature tool-chains seemed like a recipe
for disaster.

Eventually though, remarkable performance-portable results were presented in an OpenMP-
based version of OpenMC [54]. These results, though, were only made possible by first
converting the OpenMC codebase to remove many modern programming conveniences and
flattening the nuclear data structures entirely. Even after this work, specific compiler opti-
mizations in Clang for OpenMP device offloading were implemented to improve the perfor-
mance of OpenMC on GPUs.

1.1.3 GPU Monte Carlo Neutron and Photon Transport

Monte Carlo particle transport simulations on GPUs was attempted only four years after
the release of CUDA in a piece of research introducing the “particle-per-block” approach
[55]. Specifically this work focused on x-ray photon transport physics. Tickner’s approach
observed that because Monte Carlo particle transport codes tend to introduce significant
branching, the only feasible means towards running particles on GPUs would be to assign
particles to entire blocks of threads, and attempt instead to parallelize operations carried
out on particles. For example, the intersection of the ray with triangles geometry could
test multiple potential intersections simultaneously, or the sum across various elements’
contributions to the total cross section could be distributed over threads.

Tickner’s approach, however, never caught on. While it likely could provide a perfor-
mance benefit in some applications, particularly for tallying like in Sweezy’s volumetric ray
casting method [56] or potentially variants of it. In the context of neutron transport, how-
ever, the particle-per-block approach misses the opportunity for massive coalesced memory
accesses in nuclide cross section lookups that drives performance upward as more particles
run in flight, as demonstrated in works like [28], [29], [54]. The differentiating factor between
the photon problems Tickner studied and neutron transport problems lies in the cross section
grid; neutron transport are dominated by larger grids such as what XSBench models [57].
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While the computing of GPUs may be a paradigm shift over pure single-threaded CPUs,
it’s fortunate that vector-based computers were considered for simulating neutron transport
from the earliest days of computing [18]. The demands of vector-based computers are some-
what similar to that of GPUs: in this case, one instruction acts on many pieces of data.
This is known as single instruction multiple data (SIMD) programming, and the event-based
Monte Carlo method was developed to more completely utilize the resources of a SIMD
computer.

This work continued through the 1980s in the works from Brown and Martin [19], [26],
[58], culminating in an event-based Monte Carlo neutron transport code called RACER
that offered excellent performance on vector computers. A tangible benefit over the history-
based algorithm was proven, and the concepts developed therein laid the foundation for GPU
computing when it blossomed three decades later. It was in this period that the event-based
Monte Carlo technique was polished off; rather than reorganizing whole arrays of particles, it
was realized here that arrays of pointers corresponding to each event queue offered a benefit
by reducing particle shuffling. This technique was later used in the work on WARP [52] and
named “reference remapping”. Towards the end of the vector computing era, a code called
VMONT was developed that yielded 10x speedups over non-vector MC code [59]. Despite
the impressive speedups, this computing paradigm fell into disfavor as SIMD arose, which
operated on smaller vectors. To our knowledge, no MC codes were developed with the goal
of leveraging SIMD instructions specifically.

As best we know, the first attempts to GPU-based Monte Carlo neutron transport were
presented in the master’s thesis [60]. In that work, Nelson developed a mini-app that repre-
sented the core computational difficulties associated with this problem: extensive branching
and randomized memory access patterns. The work found speedups of 15-20x compared to
CPU-based versions of the same code, and recognized the applicability of event-based al-
gorithms to GPU Monte Carlo. This work found that history-based tracking outperformed
event-based, though.

Following Nelson’s work, some insightful research on GPU-based Monte Carlo neutron
transport was produced from within Nvidia [61]. While lacking a level of depth of Nelson’s
work, this research better underpinned some of the programming techniques that can enhance
performance of this type of application on GPUs. For example, while the conventional
wisdom goes that maximizing occupancy can be the key to unlocking performant GPU
code, using more registers and lowering occupancy can reduce the number of required global
memory transactions, enhancing performance [25].

The WARP [52], [62], [63] code demonstrated speedups in more detailed continuous en-
ergy Monte Carlo transport problems. The developers of WARP used proprietary geometry
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libraries optimized for GPU to achieve fast particle flight kernels.
Some implementations of multigroup Monte Carlo appeared not long after, demonstrating

excellent performance [64]–[66]. Unfortunately, the relative simplicity of multigroup-based
Monte Carlo code makes it a poor model of continunous energy applications. Specifically,
studies which compare history and event based tracking tend to conclude that history-based
tracking is superior for multigroup Monte Carlo, but event-based tracking is superior for
continuous energy [28]. It appears that a threshold in the complexity of the code, including
a sufficient representation of all types of physics and geometry required for practical nuclear
engineering, tends to cause event-based tracking to eventually outperform history-based
tracking. This complexity threshold is crossed when including effects like thermal scattering,
unresolved resonance handling, inelastic scattering, etc. With the addition of routines to
handle these effects, the code becomes more divergent both in the instruction and memory
access sense, favoring the use of event mode.

A glimpse at the performance difference between a performance portability framework
and CUDA was given in [67]. In this work, the NVIDIA Thrust library was considered to be
representative of a performance portability framework, and factors of 2-5 slower performance
were observed compared to CUDA. Notably, this work focused on mono-energetic problems
in one dimension only; the code complexity came as a result of modeling binary stochastic
medium properties. The code complexity therefore likely had substantially fewer branches
and data types than a continuous energy, constructive solid geometry Monte Carlo code:
a factor of 100x less in our estimation. Nonetheless, this work found that event-based
algorithms outperformed history-based ones. This contrasts the findings in [66] where history
mode was found to outperform event-based tracking for multigroup, simplified geometry
problems.

Work on the PATMOS code [68] explored the viability of performance portability ap-
proaches to continuous energy GPU Monte Carlo. As part of that, that work explored a few
variations on the cross section lookup problem within performance portability frameworks
and CUDA. The variations on the cross section lookup algorithm included the binary, n-ary,
double-indexing [69], and hash map [70] approaches. The concluding sentence of this thesis
is: “Programming models like StarPU, Kokkos and OpenACC should be evaluated instead
of the low-level CUDA library.” and we wholeheartedly disagree with this statement unless
the developer has access to the compiler team. Because this work only explored simplified
models of neutron transport, the full complexity of the application changes the optimal so-
lution. Excluding the OpenMP-based OpenMC work in which the developers collaborated
with the OpenMP Clang development team, only codes which have been implemented in
pure CUDA have attained performance on GPUs worthy of use outside a research setting:
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PRAGMA and Shift.
Around 2019, the first two continuous energy MC codes with notable performance gains

compared to CPU execution were presented: PRAGMA and Shift [31]. The developers
of SHIFT brought one of the most full-featured physical simulations done on GPU yet,
including effects such as thermal scattering and unresolved resonance treatment. PRAGMA
has achieved the highest performance yet of any GPU MC code. Interestingly, the initial
presentation of PRAGMA used windowed multipole [71].

Later, both PRAGMA and Shift’s practical applicability due to their novel performance
on GPUs led to implementation of domain decomposition handling [72], [73]. Because mem-
ory is far more constrained on GPU architectures than CPU, this stood as a necessary step
towards practical full-core reactor analysis using GPU Monte Carlo.

PRAGMA eventually developed a few novel optimizations for continuous energy Monte
Carlo neutron transport [29]. It was shown that a hybrid history-based method can out-
perform pure event-based Monte Carlo. This method requires particles to undergo a small
number of events and then be saved back to a queue for sorting with respect to the particle
energy. Their work on optimization of the tracking rate also included a novel “data-based
hash” which is an advancement over the logarithmic hashing approach [70] because it pro-
vides an equal amount of search work to be done to each GPU thread.

Deviating slightly from GPU programming, other work explored the ability to speed
up OpenMC using many integrated core (MIC) architectures which differ from GPUs in
that many cores able to carry out independent instructions are employed [74]. This work
presented the highest single node particle processing rate of any MC code, but the MIC
architecture fell into disfavor over time as GPUs rose to dominance in other applications.

The PRAGMA code has been applied to solving the BEAVRS benchmark with cycle
depletion including multiphysics feedback and critical boron search [75]. It has also been
adopted to use hardware-accelerated ray tracing on unstructured tetrahedral meshes for
analysis of advanced microreactors [76].

The first time-dependent GPU Monte Carlo neutronics was developed in [77]. This work
implemented a two group MC method implementing Sjenitzer’s method [4] for a real-life
reactor and gave reasonable comparison to experiment. However, as has been previously
mentioned, the multigroup paradigm fails to present the pressing challenges of GPU Monte
Carlo both from a programming and performance point of view.

The applicability of performance portability frameworks to Monte Carlo and method of
characteristics model problems was explored in [78]. The most relevant discussion there
pertained to acceleration of the XSBench [57] model problem, where it was shown that
OCCA [50], [51] outperformed CUDA. Considering that OCCA uses CUDA as a backend,
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we find this result surprising. The compiler optimization flags were perhaps different in this
case.

Disappointed by the modest performance improvements demonstrated by efforts to im-
prove the speed of GPU Monte Carlo applications, Sweezy [56] proposed offloading volumetric
ray casting (VRC) tallies to GPU. These tallies generate straight-line rays that propagate
through an entire problem at each collision site, with exponential attenuation. They can
be interpreted as the expected contribution of many track length estimators of potential
particles originating from a collision site. By tracing these rays through the problem, it was
shown that the Monte Carlo figure of merit, or inverse product of variance and run time,
could be improved on mesh tallies. VRCs have not yet been attempted in large-scale reactor
computations, and may offer some performance benefits. Due to the rapid attenuation in
optically thick reactor environments and the correlation of the samples, our experience with
particle splitting methods suggests that this research direction is not particularly promising
for GPU-based continuous energy reactor simulations.

Bossler honed in on the performance impacts of tallying [79] on GPUs. One critique of
the study is that the problem is likely a bit too simplified to capture the idiosyncracies of
full-physics Monte Carlo particle simulations; the work focused on tallying exponential at-
tenuation of mono-energetic photons along a line. The study demonstrated that replicating
tally data on a GPU can offer a 10x performance benefit compared to shared data, which re-
quires atomic memory transactions. However, in practical reactor calculations, tally memory
already forms one of the main constraints, driving developers to implement domain decompo-
sition methods [72], [73] to distribute massive tally data across many GPUs. Bossler’s work
also highlights the benefit of collective thread communications before carrying out atomic
transactions, something that our work later confirms particularly regarding writing particle
IDs into event queues. This will be discussed in detail in the next chapter.

In contrast, Shriver’s work [80] sought to develop a computational mini-app for assessing
cross-section lookup operations on GPUs that models the complexities of event-based MC
methods more accurately. It sought to use more realistic energy grids which do not balance
the work perfectly between threads, reflective of production GPU MC code environments.
It was shown in that work that their code, VEXS, more accurately mirrored the behavior
of a production GPU MC code, Shift [28]. Therefore, we suggest that researchers seeking
to develop new cross-section lookup algorithms for GPUs test their methods with VEXS
in addition to XSBench [57] to examine the sensitivity of the method on realistic, irregular
energy grids.

Our effort is not the first to demonstrate a speedup of the OpenMC code using GPUs.
The first author to achieve this tested small, leakage-heavy neutron transport problems
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with a single nuclide [81]. That work used history-based algorithms. Because the problems
tested in that work were so leaky, particles were sourced, had their cross sections looked
up, and leaked. Collisions rarely happened, compared to reactor simulations. Moreover,
only one nuclide was included in each problem. The problem geometries were meshes, and
the authors adapted their code to use proprietary NVIDIA libraries for surface mesh ray
tracing. Because the problems considered were heavy on ray-tracing operations, fantastic
speedups were reported. Further work never explored the applicability of this code to reactor
simulations with hundreds of nuclides and far more events per particle. We suspect that the
approach would perform poorly for reactor simulations.

The development of a robust GPU-based MC capability with Lawrence Livermore Na-
tional Laboratories has been documented well over the past few years in the works [82]–
[84]. While some initial results accelerating LLNL MC applications with GPUs were not
promising [84], showing slowdowns on a per-compute-node basis, continual development has
brought GPU modes of computation to the forefront. The work at Livermore has focused on
the Imp and Mercury codes, which respectively model thermal photon transport and neutral
particles. The authors report the use of a few conveniences known to be sub-optimal for
GPU computing: double precision floating point numbers, recursion, and virtual functions.
In addition, similarly to our CUDA-based OpenMC code discussed later, the authors use
managed memory. Converting the numbers from the report [84], we see that Mercury on
one NVIDIA V100 GPU performed equivalently to about seventy CPU cores.

Work at Argonne National Laboratory has delivered some of the most performant con-
tinuous energy Monte Carlo code with a modified version of OpenMC [54]. Their approach
refactored OpenMC to use entirely flat data structures. Their approach also refactored the
whole OpenMC codebase to not use polymorphism, pivoting to tagged union data structures
instead. The approach to GPU programming used OpenMP [85], which supports offloading
of computations to accelerators in general, a superset of GPUs. The developers collaborated
with the Clang OpenMP 5 development team as part of this project, and were able to inte-
grate optimizations into the compiler itself (rather than modifying the simulation code, as
all other works cited in this section have) to produce better results. In fact, this compiler
optimization delivered a 10x performance increase. The code produced as a part of this the-
sis pales in comparison, attaining roughly half the performance on the Hoogenboom-Martin
benchmark [86].

A recent conference was held in which developers from across the United States shared
their successes and failures in adapting their Monte Carlo particle transport applications
for GPUs [87]. A newcomer code to the GPU MC world was introduced there, MC/DC
which seeks to employ just-in-time compilation methods to Python code to generate GPU
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code via Numba [88]. Results from the aforementioned Livermore codes were presented,
as were results on the aforementioned Shift code. For the first time, to our knowledge,
public statements were made about performance improvements of the Jayenne and MCATK
codes from Los Alamos National Laboratory which are respectively thermal photon and
neutron transport codes. Due to the differences in the types of problems solved by each
code, a single benchmark problem could not be identified to measure the performance of
GPU particle transport simulations. The needs of thermal photon simulation codes, neutron
transport, and photon transport all differ tremendously.

With a variety of GPU-based applications laid out, and a comprehensive overview of
the attempts at GPU-based continuous energy particle transport in mind, we can quantify
some of the performance bottlenecks of bringing continuous energy MC codes to GPU. One
ubiquitously used algorithm employed in Monte Carlo codes is rejection sampling. In the
next section, we present our novel contribution in quantifying the performance impact of
rejection sampling on SIMT architectures.

We have introduced how Monte Carlo algorithms can be used to solve neutral particle
transport problems, proceeding from an assumption that the Boltzmann equation adequately
models the situation. The history-based particle tracking algorithm serves as the baseline
implementation of the Monte Carlo method for continuous energy neutron transport simu-
lations. We then introduced the intricacies of GPU hardware and its implications on GPU
programming, which motivates the use of the event-based tracking method. Before proceed-
ing, we present some novel work that enables the analysis of algorithms which use rejection
sampling on GPUs.
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Chapter 2

Impact of Rejection Sampling in SIMT
Programming

This chapter is based on the following paper:

Ridley, Gavin, and Benoit Forget. “A Simple Method for Rejection Sampling
Efficiency Improvement on SIMT Architectures.” Statistics and Computing 31,
no. 3 (March 30, 2021): 30. https://doi.org/10.1007/s11222-021-10003-z.

As previously mentioned, it is commonplace for a warp of threads to encounter a point
in the program where some threads enter an if-block, and others do not. This situation is
called warp divergence, and should be avoided if possible since it degrades the computational
throughput of the GPU. Warp divergence may be impossible to avoid in rejection sampling
algorithms where some of the threads in a warp may have to sample again in order to obtain
an accepted sample. This section finds a closed form result for how the number of iterations
required to complete rejection sampling is distributed on a warp as a function of the number
of threads per warp and the rejection probability. This distribution is found to exactly match
the exponentiated geometric distribution proposed by [89], which to the authors’ knowledge
has not been previously found to exactly govern any other processes.

Although rejection sampling typically takes more time to draw a sample on a computer
than other methods, the method is robust and can sample any distribution for which the
maximum probability is known. To restate the definition of rejection sampling given by
[90], rejection sampling from a distribution X with support in Rn with density f . Then, if
g is another distribution in the same space we can draw samples from f by the following
procedure if

∃c ≥ 1, c ∈ R s.t. f(x) ≤ cg(x)∀x ∈ Rn. (2.1)
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With a value of c satisfying the above, a sample X may be drawn by Algorithm 3. Algorithm
4 shows how this can be modified to execute in parallel.

repeat
sample U uniformly from [0, 1];
sample X with density g;

until Ucg(X) ≤ f(X);
return X;
Algorithm 3: Rejection sampling requires a loop which terminates stochastically.

repeat
if Uicg(Xi) ≤ f(Xi) then

continue;
end
else

sample Ui uniformly from [0, 1];
sample Xi with density g;

end
until Uicg(Xi) ≤ f(Xi)∀i ∈ [1, t];
return Xi;

Algorithm 4: SIMT-parallel rejection sampling requires a loop which terminates
stochastically on each of the t threads of a warp.

Understanding the performance of rejection sampling on SIMT architectures can be im-
pactful because rejection sampling is found in myriad applications. Rejection methods are
most commonly employed in Monte Carlo methods. Rejection is used nearly ubiquitously
to sample from the gamma distribution, following the method prescribed by [91]. The sam-
pling of distributions can be a performance bottleneck for certain problems like deep belief
networks where GPUs are used to generate millions of samples as quickly as possible. In
addition, rejection sampling may be used in Monte Carlo particle transport simulations,
e.g., OpenMC [92] uses rejection to sample outgoing scattering angle distributions for par-
ticle simulations where particles take on discrete energies and for sampling the resonance
upscattering effect [93] encountered in continuous particle energy simulations. Several re-
cent developments like [94] and [95] extensively employ rejection sampling in their proposed
algorithm. In light of this, a theoretical model for the expected decrease in speed of SIMT
versus MIMD evaluation of a rejection sampling method would be useful.
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Figure 2.1: Infinite Markov chain representation of transitions between possible amounts of
threads awaiting an accepted sample. Two iterations of a thirty-two thread rejection sampling
algorithm are depicted. Edges are the probability of transitioning between each state, given
by the binomial distribution Bρ(i, j). The relevant value of the binomial distribution is
placed left of a few edges above.

2.1 Derivation of the distribution

Let the rejection probability for a sample be ρ. Then, among t threads, the probability of k
threads being rejected to require another sample is given by the binomial distribution:

Bρ(t, k) =

(
t

k

)
ρk(1− ρ)t−k (2.2)

Using this, we can use induction to predict how the number of threads awaiting an accepted
sample changes with each iteration. t is the number of threads initially seeking a sample
via rejection, and call t1, t2, · · · the number of threads yet to obtain a sample at each of the
successive sampling iterations.

Now, consider the random variables tn and tn+1. We can see from Fig. 2.1 that:

tn+1|tn ∼ Bρ(tn, tn+1) (2.3)

Moreover, if tn has the distribution

tn ∼ Bρn(x, tn) (2.4)

it is then true that
tn+1 ∼ Bρn+1(x, tn+1) (2.5)

From here, it is straightforward to establish the distribution of each tn inductively. Using
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the base case:
t1 ∼ Bρ(t, t1) (2.6)

We then immediately see from the previously stated inductive rule:

tn ∼ Bρn(t, tn) (2.7)

We can now calculate the probability of termination of the sampling routine in n steps. To
be precise, the quantity in question is P [tn = 0|tn−1 > 0]. Computing this by summing all
of the independent probabilities in question gives:

P [tn = 0|tn−1 > 0] = pρ,t(n) =
t∑

i=1

(1− ρ)iBρn−1(t, i)

=
t∑

i=0

(
t

i

)(
ρn−1 − ρn

)i (
1− ρn−1

)t−1 −
(
1− ρn−1

)t (2.8)

After applying the binomial theorem once more, this results in the desired distribution
for the probability of t SIMT threads taking n iterations to sample some distribution using
a rejection method with rejection probability ρ:

pρ,t(n) = (1− ρn)t − (1− ρn−1)t (2.9)

This discrete distribution has been plotted for a few values of the parameters in Fig.
2.2. Low ρ values are plotted because these are commonly encountered in ziggurat-type
algorithms [96]. This distribution has a cumulative distribution function (CDF) of (1−ρn)t.
This distribution is identical to the one recently proposed by [89], named the exponentiated
geometric distribution. This distribution was originally proposed as a modification to the
geometric distribution, found simply by exponentiating the CDF of the geometric distribu-
tion. To the extent of the authors’ knowledge, the exponentiated geometric distribution has
thus far only been proposed to fit certain data better than other distributions. This may
be the first known case where the exponentiated geometric distribution exactly governs the
underlying statistical process.

We have verified in numerical experiment that this distribution indeed governs the re-
jection sampling process on the GPU with a simple CUDA program. A surrogate rejection
sampling process has been used, where a rejection loop exits with probability 1 − ρ. The
code for this numerical experiment can be found in Appendix A, and its results compared
to the new theoretical result are illustrated by Fig. 2.3.
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(a) ρ = 0.5 (b) ρ = 0.1

(c) ρ = 0.05 (d) ρ = 0.01

Figure 2.2: Probability distributions of completion of the rejection sampling algorithm in a
given number of iterations for ρ = 0.5 (top left), ρ = 0.1 (top right), ρ = 0.05 (bottom left),
and ρ = 0.01 (bottom right).

52



Figure 2.3: The code of Appendix A was used to verify the predicted mean iteration count
by Eq. 2.9, with which excellent agreement has been obtained.

2.1.1 Approximate Formula for Mean of The Distribution

The work of [89] provides a convenient numerical expression for all of the moments of the
exponentiated distribution. The formula provided contains a summation over infinitely many
indices which does not clearly evince any information about the sensitivity of the mean with
respect to the distribution parameters. Moreover, we also point out that while finding the
mean of this distribution is indeed tractable in closed form, we have verified using computer
algebra software for the case of interest t = 32 that this takes the form of a three-hundred
and twenty-third order rational polynomial function in ρ. Obviously, not much is afforded
here in terms of intuitive understanding of the behavior of the mean with respect to ρ and t.

As a result of this, we have derived a simple expression for the mean which can guide
intuition about the behavior of the exponentiated geometric distribution upon changing its
parameters. This is done in two parts: firstly for small values of ρ as are reminiscent of
ziggurat-type algorithms, and secondly for larger values of ρ. This is because the exponenti-
ated geometric transitions from being a monotonically decreasing distribution to a unimodal
distribution for ρ > 21/t−1, as shown by [89]. Two separate formulas can approximate these
regions with excellent accuracy.
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Approximate Mean in Unimodal Region

It was proved by [97] that the mean of a unimodal distribution always lies within 1.74
standard deviations of the mode. Regarding the distribution discussed here, [89] proved
unimodal behavior for ρ > 21/t − 1, so we know the mean could be well-approximated
by the mode for ρ > 2.2% in the 32 thread per warp case which is ubiquitously found
in GPUs. Finding a mode here is much easier than finding the mean, which cannot be
described in terms of elementary functions for general t, as far as we have found. Despite
this inconvenience, Fig. 2.5 shows that the mode approximates the mean quite acceptably.
Approximating the mean more accurately has been done, but we found that this results in
complicated combinations of special functions like the polylog and hypergeometric functions
which lend little insight to the problem at hand, and thus not discussed.

To begin, note that the binomial expression, with t large, is well-approximated by:

(1− ρn)t ≈ exp(−ρnt) (2.10)

This approximation comes from observing that because ex = limN→∞(1 + x
N
)N , if we define

x′ = −ρnt, the expression above is simply (1 + x′

t
)t. From this definition of the exponential,

we can see that this may arbitrarily closely approximate ex′ as t grows.
Using this, the exponentiated geometric distribution is well-approximated by the follow-

ing continuous distribution, so long that t is large:

pρ,t(n) ≈
(
exp(−ρnt)− exp(−ρn−1t)

)
(2.11)

Then, note that this continuous approximation very nearly preserves normalization:∫ ∞

0

(
exp(−ρnt)− exp(−ρn−1t)

)
dn =

1

ln(ρ)

∫ 0

1

(
exp(−ut)− exp(−ut/ρ)

)
/u du

= 1− 1

ln(ρ)

(
Ei(−t)− Ei(−t/ρ)

) (2.12)

Where the substitution u = ρx was used, and Ei(·) is the exponential integral function,
defined in almost any table of integrals, e.g. [98]. Fig. 2.4 clearly demonstrates the adequacy
of this approximation for t > 16 in terms of its preservation of normalization by plotting the
difference between 2.12 and unity.

With this in mind, this value of n which maximizes Eq. 2.11 is expected to approximate
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Figure 2.4: This depicts the difference between the integral of Eq. 2.11 over its domain and
unity. The preservation of normalization by using the approximation Eq. 2.11 can be seen
to be excellent for t > 16.
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the mean of the discrete distribution in question:

µ ≈
ln
(

2(ρ−1)t
ln ρ

)
ln (1/ρ)

+ 1 (2.13)

From this, we can see that the expected number of iterations required to exit the parallel
rejection sampling loop grows logarithmically with the number of threads for r sufficiently
large.

Approximate Mean in Monotically Decreasing Region

In the monotonically decreasing region, i.e., where ρ < 21/t−1, the derivation of an approxi-
mate formula for the mean is much simpler and can be done based on the fact that ρ will be
quite small here. The derivation proceeds by considering the exact expression for the mean
in terms of an infinite sum of integers times their corresponding probabilities, regrouping
some terms in that series, and approximating ρk ≈ 0 for higher order terms in the sum,
where k is a small integer. So, the exact mean is:

µ =
∞∑
i=1

i
(
(1− ρi)t − (1− ρi−1)t

)
= (1− ρ)+

2
(
(1− ρ2)− (1− ρ)

)
+

3
(
(1− ρ3)− (1− ρ2)

)
+

4
(
(1− ρ4)− (1− ρ3)

)
+

...

(2.14)

Note how in the second line, we see −2(1− ρ), which cancels out with the term in the first
line. This cancellation can be carried out N times in order to see that the mean is:

µ = lim
N→∞

N(1− ρN)t −
N∑
i=1

(1− ρi)t
 (2.15)

The key to obtaining a good approximation is to take k terms of the first sum, and suppose
that the remaining terms are close to one since ρk is very small. This allows a cancellation
with the increasing term on the right, and for k = 2 gives:

µ ≈ 3− (1− ρ)t − (1− ρ2)t (2.16)
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Figure 2.5: The dashed curve is from the large ρ Eq. 2.13, dotted curves are the small ρ Eq.
2.16, and solid curves are the true mean for a few t values.

With that, an accurate piecewise approximation to the mean of this distribution is:

µ ≈

3− (1− ρ)t − (1− ρ2)t ρ < 21/t − 1

ln
(

2(ρ−1)t
ln ρ

)
ln (1/ρ)

+ 1 else
(2.17)

Both formulas have been plotted in Fig. 2.5, with the approximate mean formula compared
to the actual numerically calculated mean for a few different values of the thread count. Fig.
2.6 shows these formulas for small values of ρ, where the second formula can be seen to give
great accuracy.

2.1.2 A More Efficient Sampling Strategy

Observing from Fig. 2.5 that it is expected to take over seven iterations on average for thirty-
two threads to obtain a sample with a 50% rejection probability, which compares unfavorably
with the expected two iterations encountered in MIMD rejection sampling algorithms, it is
natural to suppose that a more efficient algorithm could perhaps be obtained if, say, only
16 samples are produced by the warp in groups of two threads working to obtain a sample.
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Figure 2.6: This is Fig. 2.5 but with the abscissa zoomed to the ρ ∈ [0, 0.1] interval to show
how the dotted curve Eq. 2.16 is best in this range.

As a further example, consider an extreme case like a 99% rejection probability. It would
be expected that dedicating thirty-two threads to each finding a single accepted sample
would be more efficient than waiting on thirty-two threads to each obtain their own sample,
which, according to the formulas above, would take around 400 iterations. In this case, the
probability of all threads rejecting their sample would simply be ρ32, in which case a single
sample would be obtained in 1/(1− ρ32) ≈ 3.6 iterations. As such, the samples obtained per
rejection sampling iterations grows from 0.08 to 0.28.

Algorithm 5 concisely describes our proposed modified rejection sampling method to be
carried out on each thread group of a SIMT device. This section explores when strategies
like this are more efficient than the standard algorithm.

Most rejection sampling algorithms are designed such that the proposal distribution yields
a low rejection probability, which is most computationally efficient. As such, it remains in
question whether the investigation of high rejection probabilities are worthwhile, consider-
ing that algorithms such as the ziggurat method [96] typically yields rejection probabilities
less than five percent with a properly designed proposal distribution table. Similarly, the
commonly employed rejection sampling scheme for generating gamma variates by [91] has a
rejection probability less than five percent.
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repeat
if Uicg(Xi) ≤ f(Xi) then

continue;
end
else

foreach thread t in group n do
sample Vt uniformly from [0, 1];
sample Yt with density g;

end
if Any Ttcg(Yt) ≤ f(Yt) then

save Yt as this group’s sample
end

end
until all thread groups have a sample;
return Xi;

Algorithm 5: Our proposed modified rejection sampling algorithm which can produce
more samples per rejection sampling iteration. There are n thread groups which each
produce a sample.

Some more specialized algorithms, in fact, must cope with higher rejection probabili-
ties. From nuclear engineering, the Doppler broadening rejection correction algorithm [93],
which can form a computationally significant portion of a Monte Carlo neutron transport
simulation, exhibits rejection probabilities over 99% for some parts of the simulation as
shown in [99]. Similarly, [100] presents a problem which exhibits rejection rates over 99.99%,
along with a solution to that inefficiency. It is also commonly noted that high dimensional
probability distributions typically exhibit high rejection rates, e.g. in [101].

On the ubiquitous thirty-two-thread warp, it would make sense to consider firstly thirty-
two threads each attempting to obtain their own sample on each iteration. The next possible
configuration would be sixteen groups of two threads where only one sample is asked of each
thread pair per iteration. Following that would be eight groups of four threads, sixteen
groups of two threads and finally a single group of thirty-two threads looking for a single
sample. The formulas above can be used still, but t is divided by the number of groups
per warp and ρ is raised to the power of the number of threads per group, representing the
probability that each sample from the group was rejected.

The total samples obtained per rejection sampling iteration for each of these configura-
tions have been plotted in Fig. 2.7, where it can be seen that small but perhaps worthwhile
performance gains can be made by switching to these alternative sampling setups. Similarly,
Fig. 2.8 plots the ratio between the optimal method out of this class of methods compared
to the case of attempting to obtain a sample on each thread in the warp. Table 2.1 gives the
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Figure 2.7: Different thread grouping patterns can obtain better sampling performance per
unit of GPU work depending on the rejection probability. The dashed vertical lines indicate
a location where solid curves intersect, and switching to another grouping is desirable.

specific rejection probabilities where it is optimal to switch to a different layout of thread
grouping.

2.2 Discussion

Results have been obtained which predict the performance of rejection sampling in the
context of SIMT parallel architectures. While these results do not apply to MIMD parallelism
that does not suffer from the necessity of carrying out the same instructions in lockstep, these
results do translate to SIMD parallelism where masked instructions are supported. In that
case, the number of samples to obtain would correspond to the number of floating point
numbers operated on by the SIMD instructions. In the case of the latest Intel AVX-512
instructions [102], which can operate on sixteen single precision numbers at once, this would
correspond to the t = 16 case. Masked SIMD instructions, which allow SIMD instructions
on a subset of the data, could be used to control the exit from the rejection sampling loop.
This has not been explored by the authors and could be examined in future work.

The proposed algorithm of this paper is certainly sub-optimal in terms of obtaining the
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Figure 2.8: As a function of the rejection probability, this plots the ratio between the sam-
pling rate of the best thread grouping of Fig. 2.7 and the base case where each thread is
responsible for finding a sample.

Table 2.1: The optimal number of threads per sample to use are given here, in addition
to the average expected speedup compared to a single thread per sample for this region,
corresponding to divisions by vertical lines in Fig 2.7.

Threads per sample Maximum efficient ρ (%) Average Speedup
1 12.88 1
2 42.71 1.01
4 71.70 1.14
8 88.37 1.39
16 95.76 1.84
32 1 2.65
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maximum sampling rate for the sampling of one distribution repeatedly on GPU. If this
were the desired objective, persistent threading strategies for this task are surely superior.
Such methods are detailed by [103] and [34], and have been conclusively shown to improve
performance in programs suffering from warp divergence.

The method we present is strong in two distinct ways, however. Firstly, the implemen-
tation of this method is very simple, and performance improvements can be made to a GPU
Monte Carlo program with little programming effort. Only a few lines of warp-level voting
logic and warp-shared memory need be added to implement the method. We expect that
statistical software relying on a computationally intensive rejection loop could quickly add
this grouped rejection sampling algorithm and easily obtain performance improvements.

Secondly, the proposed method method has been designed to fit into larger Monte Carlo
programs which only use rejection sampling as an intermediate but perhaps computationally
intensive step. Because different warps may be attending to other parts of the sampling
routine of interest, individual warps may be responsible for carrying out a rejection sampling
part of the calculation. Because of this, the lauded persistent threading strategies described
by works like [103] and [34] were not considered because that very warp may be expected
to perform a completely different task in the next stage of the Monte Carlo computation.
These are the conditions encountered in Monte Carlo neutron transport simulations that the
authors had in mind while developing this method, and we found that similar conditions
prevail in large statistical calculations like that presented in [34].

We have shown that the exponentiated geometric distribution [89] exactly governs the
statistics of rejection sampling performed by a warp of threads on GPU, where each thread
within the warp must perform the same instruction, known as SIMT. The exponentiated
geometric distribution has only been shown to fit certain data sets better than other dis-
tributions thus far. The findings of this paper suggest that similar phenomena may be
identifiable as being distributed according to the exponential geometric.

An approximate formula for the expected number of iterations taken by a thread warp
to complete a rejection sampling iteration has been provided, and this formula has been nu-
merically verified to accurately model the expected iteration count for rejection probabilities
greater than about 2%. For smaller rejection probabilities, the formula does not work as
well, and an alternative formula has been provided.

Lastly, with this theoretical result, we have provided insight on GPU rejection sampling
algorithms without resort to numerical experiments. Our result has been verified with a
numerical experiment, with which excellent agreement was obtained. This new theoretical
result was used to define a more efficient rejection sampling layout on GPU that is partic-
ularly effective for high rejection probability. Further work could expand on these results,
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particularly regarding the theoretical performance of rejection sampling algorithms that uti-
lize sample caching as in [104]. Knowing the performance impact of rejection sampling on
GPUs, we have set the stage for how new algorithms can be designed with GPU execution
in mind.

63



Chapter 3

Bringing OpenMC to GPU

This chapter is a considerably expanded and updated version of the conference paper [105]:

Ridley, Gavin, and Benoit Forget. “Design and Optimization of GPU Capabilities
in OpenMC.” ANS Winter Conference, Washington D.C., 2021.

The code discussed in this chapter can be found at https:// github.com/ gridley/ openmc/
tree/ cuda.

The computational demands of MC to obtain satisfactory solutions for reactor problems
involving transients, depletion, and multiphysics can be quite high, and even out of reach
for today’s computers within reasonable wall times. To solve challenging reactor problems
today, we can enable MC applications to run on graphics processing units (GPUs), which
tend to attain more FLOPs and memory bandwidth per dollar than conventional central
processing units (CPUs). Utilizing this computational firepower for GPU MC, however, has
proven nontrivial.

In this chapter, we discuss the development of a GPU-accelerated version of OpenMC. In
the beginning, the focus was on offloading the cross-section lookup operation only to GPUs.
Cross-section lookup has been shown to yield excellent performance in [57]. However, the
overhead of sending microscopic cross-sections back from the GPU to the CPU was shown to
incur overhead that would yield unacceptable performance compared to offloading the whole
transport process to the GPU, and as part of this chapter we provide an argument as to why
offloading cross-section lookup is the wrong approach to GPU MC neutronics. Instead, the
full transport process should be implemented on GPU.

To this end, we developed a full-physics implementation of continuous energy GPU Monte
Carlo by rewriting or modifying all necessary OpenMC code to be callable in CUDA kernels.
In the process, we developed a variety of novel programming techniques which can allow
even an individual graduate student to tackle the onerous process of offloading a continuous
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energy Monte Carlo neutron transport code to GPU. Relative to the three other continuous
energy GPU MC neutronics codes worldwide which have been used to simulate reactors, the
performance was competitive.

We believe that the work developed here has the smallest source code delta compared to
other efforts to accomplish this task. We show a simple path towards converting complex
continuous energy particle transport codes into reasonably but not optimally performant
GPU-enabled codes with maximum code reuse and input/output compatibility. Our work
explores the efficacy of an accelerated version of OpenMC [92] in the CUDA language. The
GPU version has been kept as similar as possible to the CPU version, and returns identical
eigenvalue results compared the the CPU version. OpenMC can use event-based [26] tracking
in CPU mode, which the GPU implementation presented here is an acceleration of. While
this approach does not immediately yield code highly optimized for GPU execution, our
guiding strategy is that bottlenecks can be optimized thoroughly, and that the remaining
parts of the code can be shared with the CPU version. The two novel resulting benefits
are reproducibility of results between CPU and GPU versions and ease of maintenance and
development of the GPU code going into the future.

To begin to understand the problem, we produced a call graph of the computationally
dominant functions in OpenMC particle tracking using GraphViz [106]. Fig. 3.1 shows how
the different particle operations can be grouped into events to run on the GPU; the function
calls are mostly separate from each other. In an abstract sense, converting a complex Monte
Carlo code to use event-based processing is a graph cutting problem. The events access
similar data or tend to take similar amounts of time to execute, or tend to diverge from each
other less.

The "embarrassingly parallel" nature of MC methods conceptually makes paralleliza-
tion of such a code superficially straightforward; one need only run the serial program in
parallel but with different random number generator seeds in order to parallelize MC, com-
bined with a simple parallel reduction on tallies 1. Despite this, most early work on GPU
MC yielded disappointing speedups relative to, for example, deep learning problems. Dis-
appointing speedups originate from the nature of the GPU; the GPU performs thousands
of simple operations in parallel efficiently, but irregular memory accesses parallelize ineffi-
ciently. Conventional formulations of Monte Carlo neutron transport fall into this category.
Consequently, research exploring the efficacy of specific techniques for continuous energy
GPU MC neutronics can overcome the performance limitations of conventional MC methods
for continuous energy neutron transport. Our research specifically restricts its viewpoint

1Issues regarding parallel fission banks and tally decomposition may complicate this matter, but for the
most part MC is indeed embarrassingly parallel
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Figure 3.1: Call graph for OpenMC particle tracking, grouped by event type.

to neutron transport calculations in reactors, where, to our knowledge, only three sets of
authors have reported speedup relative to CPUs on GPU in the codes WARP, PRAGMA,
and Shift, described in respectively [28], [31], [52].

If event MC methods were already so well developed as discussed in the introduction
chapter, why should we research new ones? Very generally, computers of the past tended
towards being limited by compute throughput. Nowadays, the ratio of memory bandwidth
to data processing rate is quite different, implying our algorithms should be designed with
this in mind. The same principle especially applies to GPU, where memory accesses from
threads are not only relatively slow, but happen in serial if the memory accesses do not fall
within the same cache line. As such, revisions of event MC should be developed that place
an emphasis on locality of access to particle, geometry, and physics data.

3.1 Design of the New Code

The GPU capabilities within OpenMC in this work have been designed with code main-
tainability in mind. To our knowledge, we have created the first continuous energy neutron
transport code that can share the majority of its codebase with the CPU version of the
code. The previous works on PRAGMA [31] and WARP [52] were developed as standalone,
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GPU-only code. In the work on Shift [28], a set of GPU code disjoint from the CPU code
is employed. The other work on OpenMC [54] involved reworking the code to a state that
is clearly less friendly to new developers. In our code, we can share most data structures
through the use of unified memory and compile-time configurable data structures. Consid-
ering the thousands of person-hours that go into developing continuous energy MC codes,
this advantage sets our code apart.

3.1.1 The Advantages and Disadvantages of Unified Memory

Unified memory [107] was introduced in CUDA 6, and can considerably ease developer
effort by automatically handling memory copying between the host and GPU. For example,
in many examples in the antiquated CUDA book [108], memory on the GPU has to be
manually allocated with CUDA-specific functions. The pointers to that memory cannot be
used on the host, otherwise a segmentation fault will occur. Data allocated on the host side,
for example the nuclear data arrays produced in the initialization phase of OpenMC, has to
be copied from host-side pointers to these device side pointers in a contiguous fashion.

Unified memory introduces a small amount of overhead, but obviates the need for manu-
ally copying data between the CPU and GPU memory spaces. A special memory allocation
function called cudaMallocManaged returns pointers that may be dereferenced either on the
host or the GPU. While the data may be present on only one side of the PCIE slot at any
given time, attempts to dereference the pointer on a device not currently holding a copy of
it result in an automatic synchronization to the correct place: either CPU or GPU memory.

It might be obvious then, that in a code like OpenMC with deeply nested data structures,
unified memory considerably eases the task of allowing its operation on GPU. In the easiest
case when a CPU-based code uses a contiguous array of data, the developer must make only
one call to cudaMemcpy. In a continuous energy Monte Carlo neutron transport code, the
multitude of scattering physics require nested data structures to represent them: a reaction
might require numerous sub-arrays to represent the various probability distributions within,
and each may be represented by different types of ENDF functions such as polynomials or
linear interpolation tables. This heterogeneity of the nuclear data is a challenge in three
ways for GPU acceleration.

Firstly, implementation of the GPU code itself is rendered more difficult, as all the
nested data must be either flattened to lie contiguously in memory, or specialized code
written to handle the allocation and copying of each individual type of data. Secondly, all
GPU programming models with the exception of CUDA, to our knowledge, do not support
polymorphism.
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In the case of [54], all formerly polymorphic data was manually refactored to use switch/case
statements, which led to at least one hard-to-find bug. From a developer standpoint, this
process renders the code less aesthetically appealing and practically maintainable. Thirdly,
if the data is not manually flattened to be contiguous in memory, the data structures point
to different locations in memory, leading to a strong performance penalty. The nested data
structures typically result in accesses to many different locations in memory. This ham-
pers performance because while GPUs do offer massive computational parallelism, random
memory accesses separated sufficiently far from each other lead to complete serialization on
each thread block. Modern GPUs may even allow threads to perform separate tasks, but
accesses to separate, distantly spaced locations in memory bottleneck the work. This effect
is memory divergence, the opposite of memory coalescence.

So, the most performant approach would be to manually reorganize all nuclear data
structures into serialized chunks of memory, and even more preferably convert all ENDF
function representations to a single modality: perhaps linear interpolation tables, for ex-
ample. Premature optimization is a waste of programmer time, however. The forthcoming
programming techniques make moving the data to the GPU and using it trivial to program;
this is the approach with the minimum effort to performance ratio, despite performance
being lackluster compared to other methods, as discussed in the conclusion of this chapter.

3.1.2 Nuclear Data Structures in a CE MC Code

A full-physics implementation of continuous energy Monte Carlo requires nearly full support
for the range of reaction and function types in ENDF [109]. To our knowledge, no existing
work in the modern MC code literature succinctly summarizes the range of data structures
and methods that must be able to run on GPUs for a fully offloaded MC code. In this
subsection, we will summarize the ENDF Formats Manual’s [109] neutron-relevant models
to communicate the code complexity of writing a GPU MC code.

Because the ENDF function formats are naturally expressed by polymorphism, developers
who wish to move away from polymorphism must switch to a potentially less elegant solution
like tagged unions [110]. Figure 3.2 shows the inheritance types for different function types
in ENDF used by OpenMC.

Similarly, the data types used to represent energy and correlated angle-energy distribu-
tions in OpenMC use polymorphic behavior. Naturally, these classes implement an abstract
method that represents sampling a scattering event’s outcome. Figure 3.3 shows the types of
energy distribution in OpenMC. The Tabulated1D objects add yet another step of indirec-
tion after the indirection required by storing a pointer to an object guaranteed to be of the
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Function1D
--

Methods:
+ operator()(xsfloat x)

Polynomial
--

Attributes:
+ coeffs_: std::vector<xsfloat>

Tabulated1D
--

Attributes:
+ n_regions_: std::size_t

+ nbt_: vector<int>
+ int_: vector<Interpolation>

+ n_pairs_: std::size_t
+ x_: vector<xsfloat>
+ y_: vector<xsfloat>

CoherentElasticXS
--

Attributes:
+ bragg_edges_: vector<xsfloat>

+ factors_: vector<xsfloat>

IncoherentElasticXS
--

Attributes:
+ bound_xs_: double

+ debye_waller_: double

Figure 3.2: Inheritance diagram for ENDF function types in OpenMC.

EnergyDistribution base class. These memory accesses are likely to be entirely serialized
on a block of threads as a result of sampling potentially different reaction types on each
thread.

To expand on this theme, Figure 3.4 shows the inheritance diagram for correlated angle-
energy distributions used by OpenMC. In both the KalbachMann and IncoherentInelasticAE

classes, we can see that an array of arrays is required. This adds more indirection to the
memory accesses here, particularly if searches over multiple sub-tables are required, as in-
terpolation over the outer variable requires.

To our knowledge, no work has quantified the accuracy impact of neglecting complex
double-differential distributions and instead modeling them as more simple distributions
or resorting to a purely numerical approximation approach. For collision processing, it
may confer a substantial performance benefit to model some cases like n-body phase space
distributions or Kalbach-Mann distributions with a simple, general format. Perhaps direct
tabulations of the joint energy-angle distribution would yield acceptable accuracy in reactor
computations while substantially reducing the complexity and indirection of the code.

3.1.3 Other reasons for the choice of CUDA

Aside from its support for polymorphism that eases the job of translating the code, we chose
CUDA over other frameworks for a few more reasons. Best practices guidance for scientific
software [53] suggests using the highest level possible language. If we followed this strictly,
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Figure 3.3: Inheritance diagram for energy distributions in OpenMC.

AngleEnergy
--

Methods:
+ sample(xsfloat E_in, xsfloat* E_out, xsfloat* mu,

uint64_t* seed)
+ sample_mu(double const* E, uint64_t* seed)

CorrelatedAngleEnergy
--

Attributes:
+ energy_: vector(xsfloat)

+ energy_out_: tensor(xsfloat, 2)
+ mu_out_: tensor(xsfloat, 3)

+ skewed_: bool

CorrTable (Nested in CorrelatedAngleEnergy)
--

Attributes:
+ n_discrete: int

+ interpolation: Interpolation
+ e_out: vector(xsfloat)

+ p: vector(xsfloat)
+ c: vector(xsfloat)

+ angle: vector(unique_ptr(Tabular))

IncoherentElasticAE
--

Attributes:
+ energy_: vector(xsfloat)

+ distribution_: vector(DistEnergySab)

IncoherentElasticAEDiscrete
--

Attributes:
+ energy_: vector(xsfloat)

+ distribution_: vector(DistEnergySab)

IncoherentInelasticAE
--

Attributes:
+ energy_: vector(xsfloat)

+ distribution_: vector(DistEnergySab)

DistEnergySab (Nested in IncoherentElasticAE,
IncoherentElasticAEDiscrete,

IncoherentInelasticAEDiscrete)
--

Attributes:
+ n_e_out: std::size_t

+ e_out: vector(xsfloat)
+ e_out_pdf: vector(xsfloat)
+ e_out_cdf: vector(xsfloat)

+ mu: tensor(xsfloat, 2)

KalbachMann
--

Attributes:
+ energy_: vector(xsfloat)

+ distribution_: vector(KMTable)

KMTable (Nested in KalbachMann)
--

Attributes:
+ n_discrete: int

+ interpolation: Interpolation
e_out: vector(xsfloat)

p: vector(xsfloat)
c: vector(xsfloat)
r: vector(xsfloat)
a: vector(xsfloat)

NBodyPhaseSpace
--

Attributes:
+ n_bodies_ : xsfloat
+ mass_ratio_: xsfloat

+ A_ : xsfloat
+ Q_ : xsfloat

IncoherentInelasticAEDiscrete
--

Attributes:
+ energy_: vector(xsfloat)

+ mu_out_: tensor(xsfloat, 2)

Figure 3.4: Inheritance diagram for correlated angle-energy distributions in OpenMC.
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we would have used a performance portability framework like RAJA, Kokkos, Occa, etc.
However, the debugging and profiling capabilities of portability frameworks tend to be less
mature, and come with a smaller online user community. A few more reasons for choosing
CUDA include:

• Extensive, frequently updated documentation

• Conceptually straightforward to convert to AMD HIP language (thus covering most
modern GPUs)

• Straightforwardly allows architecture-specific optimizations

• Diverse set of users leads to low compiler bug frequency

We include the last point because as recently as CUDA 10, certain template expressions
used by an external library in OpenMC caused the compiler to fail. We suspect that if
the CUDA compiler is failing here, any performance portability framework using a CUDA
backend would also fail, and this would make finding a workaround more difficult.

While some applications may have a large codebase with the majority of the runtime
taken up by smaller computationally intensive kernels, continuous energy neutron transport
applications can be characterized as requiring large amounts of code in their kernels. While
cross-section lookups do tend to constitute a large fraction of run time, neglecting to write
efficient code in collisions or geometry treatment can severely bottleneck performance as we
show definitively in a later section. Consequently, the ability to generate device code at link
time is essential to the organization of our application.

This violation of sustainable software principles, however, serves a few purposes. Firstly,
given the complexity of a continuous energy MC neutron transport code, a well-developed
debugging tool will be required. As [53] sets forth, sustainable code should be designed to
be debugged. CUDA includes robust debugging, memory checking, and profiling tools used
by a diverse online community. If using a general performance portability framework, the
programmer is insulated from the more hardware-specific code that will be easier to debug
and reason about. Another reason for our choice of CUDA is that translation to AMD’s
HIP language should be more or less straightforward, and that would extend our code’s
applicability to most contemporary GPUs.

Two more important reasons for choosing CUDA relate to the nature of the problem
being solved. The sustainable scientific software paper directs its attention primarily to
scientists writing software to solve new problems. Our problem, though, concerns solving a
well-researched problem on a new compute architecture. We may pursue architecture-specific
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optimizations in the future, so choosing a high level performance portability framework would
be inappropriate. The second important reason is that even CUDA compilers as recent as
version 10 failed in some parts of the nearly 50 000 line C++ codebase due to the use of some
template libraries in OpenMC. If the CUDA compiler itself could not handle this, portability
frameworks would surely not as they often resort to generating CUDA code. Using only the
CUDA compiler removes a point of failure in compiling our moderately sized codebase. Using
CUDA to compile a GPU version of OpenMC, however, does not work without modification.

Despite the conveniences of CUDA, plenty of challenges remained to bring OpenMC to
the GPU. As Salmon [81] pointed out, the C++ standard template library and polymor-
phism 2 are not obviously supported in CUDA device code. OpenMC extensively uses both.
Polymorphic classes can be used on the GPU though, so long as the CUDA object is con-
structed on the device. Although polymorphism can result in divergent code, adapting it
for the device stands as the path of least resistance towards our goal of porting OpenMC to
GPU. We use the following technique to support polymorphism on both the CPU and GPU.

3.1.4 Adapting Polymorphic Code for GPUs

In the context of object oriented programming, polymorphism refers to situations where a
base class such as Particle defines some function like collide, which may change behavior
in derived classes or not even be defined in the base class. For instance the classes Photon

and Neutron may inherit from Particle and change the implementation of the class method
collide. OpenMC’s geometry and nuclear data implementation make extensive use of
polymorphism, which fits quite naturally into continuous energy MC codes.

Polymorphic objects in C++ tend to be implemented by the use of a "vtable", or virtual
table. This table contains pointers to functions which are implementations for different
behaviors. Because this table differs on CPU code than GPU code, one cannot simply copy
polymorphic objects to the GPU and expect them to work. The vtable gets set up when
a constructor for an object is called. Consequently, the object must be constructed again
on the GPU after it has been copied. Alternatively, if the object is in unified memory [23],
it may automatically be copied to the GPU or CPU side as needed. This implies that in
order to maintain functionality of an object between CPU and GPU throughout the runtime
of OpenMC without manually reconstructing objects, one must store separate copies of a
polymorphic object on both host and device, and unified memory cannot be used for this
scenario.

To refresh the nuclear engineer unfamiliar with polymorphic objects, the following code
2There is a typo in Salmon’s paper here saying "inheritance" rather than "polymorphism".

72



listing illustrates a quintessential example. Two classes, Cat and Dog inherit from a base
class called Animal. The Animal class defines a virtual method called make_noise. This
eases programmer effort by uniting common functionality into base classes: for example in
the Monte Carlo neutron transport context a Reaction base class could define a virtual
method called scatter that operates on a particle, and stores pointwise cross-section data
as a function of energy. A class called Elastic could inherit from it and define elastic
scattering physics, and likewise for inelastic scattering and others.

vector<unique_ptr<Animal>> animals = {
make_unique<Dog>() ,
make_unique<Cat>() } ;

f o r ( animal : animals ) {
animal−>make_noise ( ) ;

}

Output:

Bark!

Meow

Notably, the variable animals stores an array of pointers to classes which are known
to be subclasses of Animal. If pointers were not used, the array would store only Animal

objects which may not be Cat or Dog type. By using pointers, objects guaranteed to have
Animal functionality can be stored together, with each behaving as its own type of animal.

Almost all polymorphic objects in OpenMC are wrapped in C++ unique pointer (std::unique_ptr)
objects. We implement our own unique pointer for CUDA OpenMC to support seamless
polymorphism on both CPU and GPU, which we have included in the cuda branch of the
repository github.com/openmc-dev/openmc. This must be used with a custom implemen-
tation of the std::make_unique template function. We use the openmc rather than std

namespace. Our custom allocation function automatically toggles at compile time between
replicated and unified memory using the “substitution failure is not an error” SFINAE be-
havior [111] depending on whether the underlying class is polymorphic.

A minimal example of a unique_ptr class is shown below:

template<typename T>
c l a s s unique_ptr {
p r i va t e :

T∗ ptr ;
pub l i c :
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unique_ptr (T∗ take ) : ptr ( take ) {}
T∗ operator −>() const {

re turn ptr ;
}
~unique_ptr ( ) {

d e l e t e ptr ;
}

} ;

If we wish to have polymorphism seamlessly work on GPU, we can employ the below:

// Minimal implementation o f unique_ptr
template<typename T>
c l a s s unique_ptr {
p r i va t e :

T∗ ptr ;
T∗ ptr_dev ; // from cudaMalloc

pub l i c :
__host__ __device__ T∗ operator −>() const {

#i f d e f __CUDA_ARCH__
return ptr_dev ;

#e l s e
re turn ptr ;

#end i f
}
~unique_ptr ( ) {

d e l e t e ptr ;
cudaFree ( ptr_dev ) ;

}
} ;

These pointers can be allocated automatically as well:

template<typename T, typename . . . Args>
unique_ptr<T> make_unique ( Args &&.. . a rgs )
{

i f ( s td : : is_polymorphic<T>:: va lue )
re turn unique_ptr<T>(repl icated_new<T>(std : : forward<Args>(

args ) . . . ) ) ;
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e l s e
re turn unique_ptr<T>(unified_new<T>(std : : forward<Args>(args

) . . . ) ) ;
}

The vtables on the device can be ensured to be initialized correctly by using this function
for memory allocation:

template <typename T, typename . . . Args>
std : : pair<T∗ , T∗> repl icated_new ( Args . . . a rgs )
{

T∗ loc_host = nu l l p t r ;
T∗ loc_device = nu l l p t r ;
loc_host = sta t i c_cas t <T∗>(mal loc ( s i z e o f (T) ) ) ;

cudaMalloc(&loc_device , s i z e o f (T) ) ;
new ( loc_host ) T( args . . . ) ;

cudaMemcpy( loc_device , loc_host , s i z e o f (T) ,
cudaMemcpyHostToDevice ) ;

run_move_constructor_on_device<<<1,1>>>(loc_device ) ;
r e turn { loc_host , loc_device } ;

}

The kernel called run_move_constructor_on_device takes a while to run, relatively, and
launches a single thread on the GPU that runs a move constructor (described in [112]) in
place on the object. Move constructors have the semantic value of taking ownership of
another object, for example a unique pointer’s move constructor removes the pointer held
by another unique pointer rather than copying the underlying object. The effect of running
a move constructor in place on the GPU usually has the effect of simply constructing the
vtables needed for polymorphism to work. One possible implementation of this kernel is

// This s e t s up v tab l e s in dev i ce memory
template<typename T>
__global__ void run_move_constructor_on_device (T∗ __restrict__

d i s t )
{

s t a t i c_a s s e r t ( std : : i s_move_construct ible<T>: : value ,
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"Polymorphic ob j e c t s to be put on dev i c e must be move
c on s t r u c t i b l e . " ) ;

char bu f f e r [ s i z e o f (T) + a l i g n o f (T) ] ;
char ∗ a l i gned_buf f e r =

bu f f e r + a l i g n o f (T) − re in t e rp r e t_cas t <intptr_t >(bu f f e r ) %
a l i g n o f (T) ;

T∗ tmp = new ( a l i gned_buf f e r ) T( std : : move(∗ d i s t ) ) ;
new ( d i s t ) T( std : : move(∗tmp) ) ;

}

We can see that the “placement new” operator is used to call the move constructor on place.
The kernel also assures, at compile time, that the object in question is capable of being move
constructed, which directs the developer to write the relevant move constructors for various
polymorphic objects in their Monte Carlo code base as they work through adopting the code
for GPUs.

3.1.5 A Few Useful Data Structures and Algorithms for GPUs

In a similar vein, the C++ standard template library will not work on the GPU. In order
to address this, we have created custom implementations of a few common standard library
containers such as std::vector and std::string which work as expected on both CPU and
GPU. Of course, some intricacies come about from the fact that device code kernels cannot
allocate global memory, so methods like std::vector::push_back have no obvious meaning
on device. Rather, we have extended these containers to include optional thread-safe device
operations. Similarly, OpenMC uses the xtensor github.com/xtensor-stack/xtensor library
for Fortran-like multidimensional arrays. With GPU-compatible versions of these commonly
used data structures in common continuous energy codes, developers outside those working
on OpenMC can more easily bring their code to GPUs.

We do not necessarily believe that our present approach will provide optimal performance
in GPU versions of OpenMC. We aim to show a simple path towards converting complex
continuous energy particle transport codes into reasonably performant GPU-enabled codes
with maximum code reuse and input/output compatibility.

Our first step to adapting standard library containers to be replaced by GPU-compatible
versions was to implement allocators that determine the behavior of memory allocation.
One approach to building data structures that use GPU memory straightforwardly is to
first ensure that all data structures allocate using the new keyword. Secondly, because the
new keyword can be overloaded, a class called Unified can be defined that overrides the

76

github.com/xtensor-stack/xtensor


new operator with a cudaMallocManaged call. Lastly, any data structure which should be
used on the GPU can inherit from the Unified class, thus automatically allocating and
synchronizing to GPU memory where necessary.

Memory Allocator Classes and the Dual Pointer

A more flexible approach to the problem is to define memory allocator classes [112] that han-
dle different potentially desirable memory behaviors on GPUs. Classes behaving analogously
to standard library containers like the vector then allocate only through the allocator class
that they are templated on. For example, an implementation of a unified memory allocator
might include methods like:

c l a s s Un i f i e dA l l o c a t o r {
. . .
i n l i n e po in t e r a l l o c a t e ( s ize_type n)
{

po in t e r tmp ;
cudaError_t error_code = cudaMallocManaged(&tmp , n ∗ s i z e o f

( value_type ) ) ;
i f ( error_code != cudaSuccess )

CubDebugExit ( error_code ) ;
r e turn tmp ;

}
i n l i n e void d e a l l o c a t e ( po in t e r p , s ize_type )
{

i f (p == nu l l p t r ) r e turn ;
cudaError_t error_code = cudaFree (p) ;
// For the l a t t e r , t h i s happens when running d e a l l o c a t e in

d e s t r u c t o r s
// in on o f OpenMC’ s many g l oba l v a r i a b l e s which de s t ruc t

a f t e r main ( ) .
// The CUDA RT API has a l r eady handled f r e e i n g the memory

in that case ,
// so that e r r o r i s s a f e to i gnor e .
i f ( error_code != cudaSuccess && error_code !=

cudaErrorCudartUnloading )
CubDebugExit ( error_code ) ;

}
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} ;

Allocator classes come with a fair amount of other boilerplate code, so we direct the reader
to [112] for more information about the requirements of an allocator.

Because unified memory can come with a slight performance overhead, another approach
to allocation might be required. In this case, we define the ReplicatedAllocator which can
allocate two pieces of memory of the same size each on the host and the device, with the user
left to manually sychronize the code. Because allocators define the type of the pointer they
return, a special pseudo-pointer class that stores both the host and device memory pointers is
defined that automatically dereferences the correct choice of host or device pointer based on
whether the code runs on the host or device. We named this the DualPointer, implemented
as:

template<typename T>
c l a s s DualPointer {
p r i va t e :

T∗ host ;
T∗ dev i ce ;

pub l i c :
__host__ __device__ T& operator ∗ ( )
{

#i f d e f __CUDA_ARCH__
return ∗ dev i ce ;

#e l s e
re turn ∗ host ;

#end i f
}
__host__ __device__ T const& operator [ ] ( unsigned i n t indx )

const
{

#i f d e f __CUDA_ARCH__
return dev i c e [ indx ] ;

#e l s e
re turn host [ indx ] ;

#end i f
}
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__host__ __device__ T& operator [ ] ( unsigned i n t indx )
{

#i f d e f __CUDA_ARCH__
return dev i c e [ indx ] ;

#e l s e
re turn host [ indx ] ;

#end i f
}

__host__ __device__ T∗ operator+(unsigned i n t o f f s e t )
{

#i f d e f __CUDA_ARCH__
return dev i c e + o f f s e t ;

#e l s e
re turn host + o f f s e t ;

#end i f
}
__host__ __device__ T const ∗ operator+(unsigned i n t o f f s e t )

const
{

#i f d e f __CUDA_ARCH__
return dev i c e + o f f s e t ;

#e l s e
re turn host + o f f s e t ;

#end i f
}

__host__ __device__ DualPointer ( ) : host ( nu l l p t r ) , dev i c e (
nu l l p t r ) {}

// Copy a given po in t e r i n to each . This can be used with
managed memory

__host__ __device__ DualPointer (T∗ const& ptr ) : host ( ptr ) ,
dev i c e ( ptr ) {}

__host__ __device__ DualPointer& operator=(T∗ const& ptr )
{
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host = ptr ;
dev i ce = ptr ;
r e turn ∗ t h i s ;

}

// These should e x c l u s i v e l y be used f o r cudaMemcpy c a l l s
__host__ T∗ host_pointer ( ) { re turn host ; }
__host__ T∗ dev ice_pointer ( ) { re turn dev i ce ; }

DualPointer ( DualPointer const&) = de f au l t ;
DualPointer& operator=(DualPointer const&) = de f au l t ;
DualPointer ( DualPointer&&) = de f au l t ;
DualPointer& operator=(DualPointer&&) = de f au l t ;
~DualPointer ( ) = de f au l t ;

f r i e nd c l a s s Rep l i ca t edAl l oca to r <T, PinnedAllocationOnHost : :
no>;

f r i e nd c l a s s Rep l i ca t edAl l oca to r <T, PinnedAllocationOnHost : :
yes >;

} ;

We can see that the ReplicatedAllocator is listed as a friend class, and as mentioned
before is responsible for allocating the memory that the DualPointer holds. Again we
point out that more boilerplate code is required to fully implement an allocator, so only the
nontrivial details are shown below.

template<typename T,
PinnedAllocationOnHost UsePinned = PinnedAllocationOnHost : : no

>
c l a s s Rep l i c a t edA l l o ca to r {
pub l i c :

i n l i n e po in t e r a l l o c a t e ( s ize_type n)
{

po in t e r tmp ;

i f ( UsePinned == PinnedAllocationOnHost : : yes ) {
cudaError_t error_code =
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cudaMallocHost(&tmp . host , n ∗ s i z e o f ( value_type ) ) ;
i f ( error_code != cudaSuccess )

CubDebugExit ( error_code ) ;
} e l s e {

tmp . host = (T∗) mal loc (n ∗ s i z e o f ( value_type ) ) ;
}

// A l l o ca t e on dev i ce
cudaError_t error_code = cudaMalloc(&tmp . device , n ∗ s i z e o f

( value_type ) ) ;
i f ( error_code != cudaSuccess )

CubDebugExit ( error_code ) ;

r e turn tmp ;
}
i n l i n e void d e a l l o c a t e ( po in t e r p , s ize_type )
{

i f (p . host ) {
i f ( UsePinned == PinnedAllocationOnHost : : yes ) {

cudaError_t error_code = cudaFree (p . host ) ;
i f ( error_code != cudaSuccess && error_code !=

cudaErrorCudartUnloading )
CubDebugExit ( error_code ) ;

} e l s e {
f r e e (p . host ) ;

}
}

// See comment in Un i f i e dA l l o c a t o r on t h i s method
i f (p . dev i ce ) {

cudaError_t error_code = cudaFree (p . dev i ce ) ;
i f ( error_code != cudaSuccess && error_code !=

cudaErrorCudartUnloading )
CubDebugExit ( error_code ) ;

}
}
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} ;

The ReplicatedAllocator is templated on an execution policy [113] that determines
whether host memory is pinned or not. As the book [108] discusses, the cudaMallocHost

allocates pinned CPU memory. This memory disables the usual memory paging mechanism
to keep this memory paged in at all times, which can enhance the data transfer rate between
the CPU and the GPU.

With the UnifiedAllocator and configurable ReplicatedAllocator, data structures in
a continuous energy MC code can be parameterized to behave differently depending on the
underlying choice of allocator. This functionality is employed in the next section to quickly
experiment with a few different means of synchronizing microscopic cross-sections between
the GPU and CPU when attempting to offload cross-section lookups to the GPU.

A vector class for GPUs

On top of using parameterizable allocators, independent implementations of nearly standards-
conforming data containers should include some additional functionality to facilitate reason-
able performance on GPUs. For example, the push_back method on std::vector does
not have a clear interpretation on a GPU, as the behavior here with multiple threads is
ambiguous. Should an atomic operation be used to increment the length of the vector?
Should additional memory be allocated, a feature possibly not supported in a given GPU
programming model?

This ambiguity calls for some specialized routines. In our implementation of openmc::vector,
we assume that no other threads are attempting to modify the data when calling push_back.
Because modification from many threads is a common scenario, we implement a separate
thread_safe_append that uses the CUDA atomicInc function to safely increment the index
of the end of the array. In both cases, we assume that enough memory has already been
allocated from the host using the reserve method. If an attempt is made to write beyond
the end of the array, the __trap() instruction is called to cancel code execution on the GPU
and provide an entry point for debugging.

If separate GPU and CPU memory are being maintained by one data structure by use of
the aforementioned DualPointer type, the user is left to manually synchronize data in either
the CPU to GPU direction or vice-versa. We use the SFINAE [111] (substitution failure is
not an error) technique to toggle on methods called syncToDevice and syncToHost that
manually synchronize the data in either direction.

Moreover, as will be discussed in the coming section on code optimizations for GPU MC
codes, having all threads attempt to simultaneously atomically push back into a vector or
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other data structure might result in poor performance due to the contention of the memory
transaction. If a collective communication is first carried out on the thread block or warp to
decide which threads should write into which indices (typically achieved with a parallel scan
operation), the data structure’s known end-of-array pointer should be updated manually after
the threads decide where to write. Consequently, we provide a method to manually update
the end-of-array pointer, updateIndex, which must be called to ensure code correctness after
a coordinated, collective update like this is made.

An array class for GPUs

In addition to a std::vector replacement, we implemented a GPU-compatible std::array.
This data structure has a fixed size, and requires no memory allocation ever in a reason-
able implementation of it. Consequently, the GPU-compatible implementation for a data
structure like this looks identical to a typical CPU implementation but with the __host__

__device__ qualifier on all methods that might run on the GPU. Our implementation of a
tensor class similarly required no on-the-fly memory operations, as in a continuous-energy
Monte Carlo code the tensors that occur are read-only and relate to nuclear data. However,
the tensor class did have one nontrivial aspect to it.

A tensor class for GPUs

We implemented a compile-time loop unfolding technique in our GPU-compatible tensor
class. This was accomplished with recursive templates, and allows automatic unrolling of
the loop over tensor indices to compute the underlying linear array index. Because the
tensor rank is known at compile time, this loop can be fully unfolded without relying on the
compiler potentially not unrolling it with template metaprogramming.

The tensor element access operator is defined as:

template<typename . . . Args>
__host__ __device__ T& operator ( ) ( Args . . . a rgs )
{

constexpr s ize_type one = 1 ;
re turn begin_ [ bracket_indx<Rank − 1 , Rank>: : c a l c (

one , std : : forward_as_tuple ( std : : forward<Args>(args ) . . . ) ,
s ize_ ) ] ;

}

Where the bracket_indx class is defined as:
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template<in t Idx , i n t Rank>
s t r u c t bracket_indx {

us ing tuple_type =
typename expander<size_type , std : : make_index_sequence<Rank

>>:: type ;
__host__ __device__ s t a t i c s ize_type c a l c (

s ize_type co e f f , tuple_type ind i c e s , const s ize_type ∗ s i z e )
{

re turn c o e f f ∗ std : : get<Idx>( i n d i c e s ) +
bracket_indx<Idx − 1 , Rank>: : c a l c ( c o e f f ∗ s i z e [ Idx ] ,

i nd i c e s , s i z e ) ;
}

} ;
template<in t Rank>
s t r u c t bracket_indx <0, Rank> { // Sp e c i a l i z e on base case to

not r e cu r s e
us ing tuple_type =

typename expander<size_type , std : : make_index_sequence<Rank
>>:: type ;

__host__ __device__ s t a t i c s ize_type c a l c (
s ize_type co e f f , tuple_type ind i c e s , const s ize_type ∗ s i z e )

{
re turn c o e f f ∗ std : : get <0>( i n d i c e s ) ;

}
} ;

For example, for a 3-tensor of double-precision numbers, denoted in our code as tensor<double,
3>, the indexing operation for a variable named salphabeta would be salphabeta(3, 4,

2) and expands to the generalization of row-major form, size(1)*size(2)*3 + size(1)*4

+ 2.

A string class for GPUs

Lastly, many classes in OpenMC use std::string data to store text such as their name. In
order to allow strings to be automatically copied to the GPU, we implemented a string-like
class without any optimization that stores character data in the GPU-compatible vector
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that automatically uses unified memory described above. A few interfaces that provide
interoperability with the standard library string-related were implemented where necessary;
details can be found in the file include/openmc/string.h.

With these data structures in hand that ease the handling of complex data for GPU-based
continuous energy Monte Carlo transport simulations, we proceeded to explore offloading the
cross-section lookup operation to GPUs.

3.2 Offloading Cross-Section Lookup

With the means of adapting continuous energy MC codes for GPU laid out, we can explore
the first steps to bringing a MC code to GPU. Our first work in attempting GPU-accelerated
continuous energy Monte Carlo neutron transport simulations focused on accelerating the
cross-section lookup operation only. For most problems of interest in reactor analysis, mi-
croscopic cross-sections for each nuclide must be computed. For depletion calculations, the
reaction rates in the regions with large numbers of nuclides must be computed, so we assume
that the full set of microscopic cross-sections present in a given material has to be looked up
on the GPU, then transferred back to the host.

Some other work has been carried out focusing on exclusively [114] offloading the cross-
section lookup operation to the GPU. The results showed a speedup factor around one; in
other words neither hurting or helping compared to carrying out all operations on the CPU.

3.2.1 Different XS-Lookup Offload Methods

Table 3.1 shows the different approaches to synchronizing microscopic cross-section cache
values. In case A, unified memory is used to automatically handle synchronization between
the host and GPU. In case B, a replicated memory approach is employed by simply changing
the allocator on each particle microscopic cross-section cache to be a ReplicatedAllocator

rather than a UnifiedAllocator. Case C aligns each particle’s microscopic cache to take a
contiguous block of memory, so only one cudaMemcpy call is made rather than many. This
increases the effective bandwidth by decreasing latency effects, illustrated in 3.5. Case D
pinned the memory pages to effectively increase the bandwidth by reducing latency, and
Case E used what we deemed the transfer queue in which the event-mode particle array’s
microscopic cross-section caches were collapsed to a secondary array of reduced size which
contiguously held only particles’ nuclide-wise microscopic cross-section caches that required
a lookup operation. Approach E therefore reduces the amount of useless data transferred to
zero (e.g. nuclides in the contiguous cache that did not require a lookup), but requires some
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Figure 3.5: Effective bandwidth vs. data transfer size for three GPUs. The Titan V and
H100 are connected over PCIE, whereas the A100 is connected over SXM4. The data was
measured by sending arrays to and from the GPU; “H2D” means “host to device” and vice-
versa.

additional memory copying operations that are not across the CPU/GPU interface (PCIE
or SXM).

Fig. 3.6 shows the results for each of these techniques. The different methods A-E are
listed by Table 3.1. These cases have to transfer microscopic cross-section data in between
the CPU and GPU. In OpenMC, microscopic cross-section cache entries for each nuclide
include the total, absorption, fission, fission production, elastic, thermal inelastic, thermal
elastic, photon production, energy grid index, nuclide temperature grid index, energy inter-
polation factor (the fraction of contribution from the right bounding point on the energy
grid), whether probability tables were applied to the cross-sections, the energy corresponding
to the cache, and the temperature. When the cross-section of a nuclide is requested, data
is pulled from the cache entry if the particle’s current energy and temperature match the
cache’s values. Otherwise, all the microscopic cross-sections are recalculated based on a grid
lookup or potentially windowed multipole calculation depending on the calculation type and
particle energy.

The total size of the microscopic cross-section cache entries for each nuclide is 161 bytes,
including all six depletion reactions. For a problem with 250 nuclides (akin to a depleting
reactor problem), that means that each particle uses about 40 kB of space for the whole
array of microscopic cross-section data. Our measurements shown in 3.5 show that sending
individual particle cache arrays results in deeply sub-optimal effective bandwidth.
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Figure 3.6: Results of offloading the microscopic cross-section lookup operation to the GPU.
The speedups are listed relative to one CPU core. We can observe only modest speed gains
which do not serve as a compelling basis for using the XS-lookup-only approach to GPU
acceleration.
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Table 3.1: Cross-section lookup offload synchronization approaches

A Unified Memory
B Replicated Memory
C Replicated, Contiguous Memory
D Replicated, Pinned, Contiguous Memory
E Replicated, Pinned, Contiguous Memory w/ transfer queue

Figure 3.7: The distribution of the number of collisions each particle makes in a typical
PWR problem.

3.2.2 The upper bound of offloaded lookup performance

Here, we demonstrate the upper bound of particle processing in a code that offloads cross-
section lookups only to the GPU. The upper bound of the tracking rate for a given problem
can be estimated by assuming all events to execute instantaneously; the only limiting factor
is transferring cross- section cache arrays between the CPU and GPU. The first step here is to
collect the distribution of the number of times a particle must have a new set of cross-sections
looked up. Assuming that the particle crosses every material in the problem at each new
energy, the full set of roughly 250 nuclides must be looked up for each new energy. Again,
the problem here represents a typical depleted reactor. Figure 3.7 shows the distribution of
the number of collisions a particle for a typical pressurized water reactor unit cell problem
makes.

If we assume that fifty collisions per particle adequately represents the long work tail that
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Figure 3.8: The particle processing rate for cross-section offloading relative to CPU perfor-
mance.

can hamper GPU performance, we find that each particle requires about two megabytes of
data to be transferred from the GPU over the course of its life. We can now relate this with
GPU bandwidth from Fig. 3.5. If the particle microscopic cross-section cache arrays are
transferred individually, a 0.04 MB transfer, we can see that even the most high performance
GPUs end up with a 2 GB/s effective bandwidth. This implies that at most one thousand
particles per second can be handled by the GPU, regardless of how fast the other parts
of the code are! If the cache data is amalgamated into a large array, with an infinite number
of particles, we can reasonably assume a 10 GB/s effective bandwidth, equating to at most
five thousand particles per second.

These numbers are in line with the predictions of Fig. 3.6. Now the question stands:
how useful is this relative to the tracking rate a typical CPU can attain? We ran a depleted
fuel assembly in OpenMC to answer this question, and plotted the result of techniques D
and E relative to CPU performance in Fig. 3.8. In line with the results of [114], we see
no performance gain relative to pure CPU execution. With the remarkable results obtained
by [31] by fully offloading transport in mind, we recommend researchers abandon offloading
cross-section lookups only and instead focus on porting the entire transport and tallying
process to GPU. PRAGMA can hit tracking rates around one-hundred times as high by
fully offloading transport to the GPU.
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Figure 3.9: The Hoogenboom-Martin benchmark geometry, representing a large PWR.

3.3 Particle Tracking Rate Optimizations

Without a level of performance sufficiently exceeding normal CPU execution, a GPU-based
Monte Carlo code is useless. After our initial development of this CUDA-based version of
OpenMC, we pursued a variety of changes both of our own design and previously explored
by others. Our hope with this section is to guide future developers of GPU MC applications
to pursuing the most effective code changes while not wasting time on techniques we found
to be marginally or completely fruitless. Specifically, because these tests were carried out on
the most recent H100 GPU from Nvidia, the results presented presented here highlight the
most promising optimization techniques on modern GPU architectures.

In this section, we quantify the effect of a variety of modifications to our code by testing
on the Hoogenboom-Martin benchmark [115], illustrated in Fig. 3.9. The OpenMC input
for this problem was prepared and extended by John Tramm and can be found online [116].
His extension includes 255 nuclides in the fuel to mimic the main computational expense in
simulating a depleting nuclear reactor–the high computational expense of many cross-section
lookups.

Unless noted otherwise, all results presented below were obtained on an NVIDIA H100.
The code was compiled using version 12.2 of nvcc, all-level caching was used with the
-dlcm=ca flag, -O2 level optimization, and double-precision floating point numbers. When
results are presented as a function of the number of particles in flight, the total number of
particles per generation was chosen as double the maximum number in flight and the in-flight
array was continuously refilled per one-hundred events.

In order to measure the effect of each of the below optimizations to the particle tracking
rate, we compare a fully optimized baseline version of the code to a version in which a given
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Figure 3.10: The baseline optimized code’s time in each type of kernel per source particle
on the H100 GPU.

optimization has been removed. The extent that performance falls in each case measures the
efficacy of each optimization. We directly compare the overall particle processing rate for
each of the below cases to the baseline case. In contrast, the detailed timing breakdown is
not presented for direct comparison. To start with, we present the total time spent in each
type of CUDA kernel per source particle in Fig. 3.10.

3.3.1 Fast Push Back to the Event Queues

The problem of appending to event queues on GPU is introduced in [28]. We adopted Shift’s
approach of using separate cross-section lookup event queues for fuel and non-fuel material
as a result of the disparate amount of computational work to be done in each material
type. This leaves collision, surface crossing, and particle flight as the other main CUDA
kernels that comprise the event MC algorithm. In the queue-based event MC algorithm, one
allocates an array of particles, and tracks which event should be executed next by queues.
There is one queue for each event type, and these queues store indices of particles which
need to be operated on. In the case of the cross-section lookup queue, one always knows
that all particles should should then be placed into the flight queue. As such, a simple
cudaMemcpyAsync call for moving the cross-section lookup queue data to the advance queue
suffices.
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Figure 3.11: Performance gains from using parallel compaction algorithm on particle indices
on a fresh PWR pin cell problem.

In contrast, for the other events, such as a collision, it is unknown a priori which queue
a particle will be transferred to. If a collision happens in the fuel, that particle index must
go to the cross-section lookup queue in the fuel, and similarly for non-fuel. The Shift team
used an atomic increment (atomicInc) function from each thread on the queue index, and
use the newly returned value to determine which index in the queue a particle index should
be written to. Because many threads on the device call this function at once, an atomic
operation can be costly.

In our alternative approach, we propose to assign an integer value of either one or zero to
particles which respectively are in the fuel or non-fuel. By performing a block-wide exclusive
parallel scan on these values, we can precompute relative indices into the queue, then compute
the absolute index with an atomicAdd call from the last thread in the block. This reduces the
number of atomic operations by two orders of magnitude, and the performance gains in each
kernel are substantial. The surface crossing, collision, and advance kernels respectively ran
2.2, 4.2, and 6.6 times faster compared to the original GPU kernels using atomic operations
on a fresh PWR pin cell on an NVIDIA Titan V GPU.

Eventually, we pivoted to another more simple and performant approach that accom-
plishes the same task of reducing contention from an atomic operation. The colloquially
named atomicAggInc function performs an atomic increment by one of an integer, but does
so using collective communication across a warp rather than the block through shared mem-
ory [117]. Searching the internet for an implementation of atomicAggInc will easily yield
an example implementation of it, and we recommend using this approach for appending to
the event MC queues.

This optimization has a nearly negligible effect on depleted reactor problems because cross
section lookups vastly dominate the computational expense compared to thread contention
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over updating the queue index. It also plays an important role when a relatively small
number of particles are in flight. We especially recommend this optimization for simulations
which do not include hundreds of nuclides per material.

3.3.2 Single precision nuclear data

The second optimization we attempted was using single precision nuclear data rather than 64
bit floats as used by default in OpenMC. Because the uncertainties associated with nuclear
data are much higher than the error induced by using 32 bit floats, this change to any GPU
MC code is desirable, as we found our tracking rate to rise by about 7% after introducing
this change in a depleted PWR fuel pin problem at full saturation. This can be attributed
to an increase in the cache hit rate.

Figure 3.12 shows the particle processing rate on the H100 as a function of the number
of particles in flight. One data point in the single-precision curve is glaringly missing; this
was the result of a chance illegal memory access that rarely happens in single-precision mode
calculations. The code was not built for numerical robustness in mind.

Two primary changes were required to enable single-precision nuclear data. Firstly, in
the loop over nuclides to sample the collision nuclide, the cumulative probability of each
potential collision nuclide is incremented over the course of the loop. After exceeding some
uniform random number, that collision nuclide is chosen. Due to roundoff, it is possible for
this loop to fail to terminate as a result. One approach to fix this would be defaulting to
the last nuclide in the loop when this happens, but instead we used the speculative collision
nuclide sampling technique described in Subsection 3.3.9. The speculative collision nuclide
sampling technique is far more robust against roundoff errors because it does not rely on
computing a cumulative probability.

Secondly, we found that illegal memory accesses also frequently occurred when, during
collision processing, a non-elastic reaction had to be sampled. Again, a cumulative prob-
ability is accumulated in a loop over the various reaction constituents to the non-elastic
cross-section to determine the type of non-elastic collision. The loop would cause an illegal
memory access in the event of failure, so we added code to check for out-of-bounds access and
fall back to elastic collision sampling in this case. Still, some other rare numerical problem
occurred that crashed the missing point in Fig. 3.12. Figure 3.13 shows the kernel timing
breakdown per particle for this mode versus the number of particles in flight.
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Figure 3.12: The particle tracking rate for the baseline calculation using double-precision
nuclear data and a modified version using single-precision data.

Figure 3.13: The single precision nuclear data code’s time in each type of kernel per source
particle on the H100 GPU.
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3.3.3 Struct of Arrays

The Shift team has explored struct-of-array versus array-of-struct layouts of particle data.
We designed our particle class to inherit from a base class that defines particle data layouts
in memory and provides accessor methods to them. This allows us to seamlessly switch
between a struct-of-array and array-of-struct particle data layout. We found that struct-of-
array yields about a XXX% performance improvement in a depleted fuel pin problem.

We present a novel method for easily switching between struct-of-array and array-of-
struct approaches within an event MC code. The aim here is to facilitate the sharing of
a codebase that can compile for efficient history-based tracking on CPUs or event-based
tracking on GPUs. When compiled in GPU mode, the code would switch to struct-of-array
mode and vice-versa. The key is to separate responsibilities of representing and accessing
data into two separate classes.

The Particle class that implements physical operations should only express the un-
derlying data in terms of getter functions: for example using particle.r() rather than
particle.r to denote the particles position in space. The r() accessor method should be
provided by a base class that is chosen at compile time depending on whether struct-of-array
or array-of-struct layouts are desired.

For the latter approach, we implement a class called ParticleData that simply stores
the relevant particle data and provides accessor functions like r(). More interestingly, for
struct-of-array mode, we implement a class called ParticleHandle which implements the
same accessor methods, but instead caches a particle index as well in the class. Methods like
r() then return values from global arrays that store all particles’ positions, for example, based
on the cached internal index. By doing so, the Particle class is reduced from storing all the
particle data to being a simple mask over an integer that provides an interface to the particle
data arrays. All physics code, therefore, can be re-used for both struct-of-array mode and
normal history MC mode. We direct the reader to the files include/openmc/particle.h,
include/openmc/particle_data.h, and include/openmc/soa_particle.h for more de-
tails. Figure 3.14 illustrates a simplified picture of the difference in data layout, with lines
between boxes indicating their organization as an array.

Figure 3.15 reports the performance difference between the baseline code which uses
a structure of arrays to represent particles, whereas the “AOS mode” curve represents an
array of particles, similar to what [54] employed. Figure 3.16 shows the impact of AOS
mode on each of the kernel timings. Because this configuration of the code results in an
entirely different access pattern within every CUDA kernel, comparison against Figure ?? is
especially interesting.
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Figure 3.14: The difference between SOA and AOS data layouts visualized for a particle
data type with energy, position, and weight items. Notably, the SOA layout may be a struct
of arrays of structs, as is shown for the position variable on the right. Whichever layout is
best for coalesced memory access should be chosen.
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Figure 3.15: The particle tracking rate for the baseline calculation using a structure of arrays
to represent particle data versus a modified version of the code using an array of structures.

Overall, we can see that the conventional wisdom about the superiority of structures
of arrays on GPUs holds true. The last few missing data points were due to an overly
conservative assumption on the maximum number of secondary particles running the code
out of memory. Regardless, extrapolating the curve yields the same conclusion and an
approximate 10% slowdown incurred by using an array-of-structures data layout.

3.3.4 Linear search beats binary

We use a linear search combined with a hash-based cross-section lookup as suggested by the
Shift team [28]. This improved performance by about 4% compared to the binary search
(after hashing narrows the window) approach, but only in the limit of large numbers of
particles in flight. Figure 3.17 shows the particle processing rate for binary searches on the
cross-section grid versus the baseline linear search method. Overall, we can observe that
the move from binary to linear search introduces a quite small performance gain compared
to binary searches, but considering its simplicity is surely a worthwhile development effort.
Lastly, superior hashing techniques exist for tailored for GPUs which provide a constant
amount of search work to do for each thread [29] have been developed. The relative merits
of binary search and linear search may be different in that case compared to the logarithmic
hashing technique [70].
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Figure 3.16: The array-of-structures code’s time in each type of kernel per source particle
on the H100 GPU.

Figure 3.17: The particle tracking rate for the baseline linear search calculation versus binary
search for cross-sections on the H100.
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3.3.5 Continuous Particle Refill

The last optimization was the continuous refill of in-flight particles from the fission bank as
described in the paper [28]. Although the original intent for this technique was for using
more particles per generation than will simultaneously fit in GPU memory, we found this
can improve the tracking rate by nearly 7%. We suspect this results from dead particle slots
filling a smaller fraction of the particle data arrays, which results in more coalesced accesses
to particle data.

To implement this, we added an extra event MC operation that handles refilling of the
particle array array into locations where particles’ lives have completed. First, a kernel
scans for locations of particles in the particle array where particles have completed their
lives. These free positions are written to a temporary array. A second kernel then handles
filling the positions either from the fission bank or sampling the fixed source, which also
searches for the current cell containing the particles.

This refilling operation should not be carried out after every event. Instead, we present
an extra option which is how frequently refilling should be carried out in terms of the number
of events executed. Figure 3.18 shows the performance impact of periodic particle refilling.
We direct the reader to the code called within the process_refill_events function in our
CUDA code. A parallel scan is first carried out to find the indices of dead particles, then
a kernel to launch particles from the fission or fixed source runs after creating a temporary
array denoting the locations of slots in the particle array which are to be refilled.

From Fig. 3.18, we see that the optimal tracking rate is fairly insensitive to the refill
interval. It takes thousands of events for all particles in the array to die out, so this plot
highlights the efficacy of continuous refill in enhancing the tracking rate by about 10%. Of
course, quite a few more particles per generation than the number in flight have to be used,
otherwise no refilling could take place. Here, we used a generation size of 10M particles with
5M in flight.

The performance benefit originates from two effects. Firstly and most importantly, the
particle population continuously dwindles as particles traverse their lifetimes. Eventually,
the population falls below the limit that fully saturates the device shown in numerous other
plots in this chapter as a sigmoidal curve that shows higher tracking rates with more particles
in flight. By refilling, the device stays in a state representative of the rightmost part of the
curve for longer.

Secondly, continuously refilling particles fills “holes” in the particle array. The mean
distance between active particles rises as particles in the array die off, continuously decreasing
the probability of cache hits as the particle population falls. By refilling the array, the
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Figure 3.18: The particle tracking rate on an A100 GPU varying with the refill event period.

probability of a cache hit is restored temporarily to its original value.

3.3.6 Using __ldg and __restrict__

The baseline version of the code uses the __ldg and __restrict__ keywords in the cross-
section calculation kernel. The __ldg uses loading from global memory through the texture
cache, and can only be used for load operations. By using this function to load cross section
rather than standard pointer dereferencing, we hint to the code that memory accesses are
expected to be encountered here. In the event of having a very large number of particles in
flight, this may be beneficial for the cross-section lookup.

Similarly, the __restrict__ qualifier on a pointer is used to indicate that no other
pointers reference that memory. By default, without this assumption, certain memory access
optimizations cannot be carried out. We also tried applying __restrict__ where possible
in our cross-section lookup kernel. Figure 3.19 shows the tracking rate for the baseline
calculation which used these keywords versus a version of the code in which all instances
of __ldg and __restrict__ were deleted. We can see that the performance difference
is negligible. With the -O2 compiler flag and link-time optimization, the CUDA compiler
appears to already apply these optimizations. Therefore, we suggest that developers of GPU
MC codes do not spend time adding __ldg and __restrict__ to their code and instead
focus on other areas.
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Figure 3.19: The particle tracking rate for the baseline version using __ldg and __re-
strict__ versus without on the H100.

3.3.7 Sorting the Cross-Section Lookup Queue

Next, we measured the effect of sorting the cross-section lookup queue. As discussed in
the introductory chapter, coalesced memory accesses achieve effective memory bandwidth
an order of magnitude faster than purely random accesses to global memory. Figure 3.20
illustrates our measurement of this effect on a few GPUs. We can see that GPUs beyond
the Volta architecture exhibit a lower penalty for scattered memory accesses due to what we
assume are advanced caching algorithms.

It was first noted in [28] that by sorting the cross-section lookup queue by particle energy,
the cross-section lookup operation can be made to have a large number of coalesced accesses.
After the event queue for cross-section lookup is sorted by energy with a large number of
particles, blocks of particles will all be of a similar energy. If they are synchronized to loop
over the same nuclides, most accesses to the nuclide’s energy grid and cross-section values
will be coalesced. It is through this mechanism that substantial acceleration of depleted
problems can take place.

Figure ?? compares the performance of a version of the code that does not sort the cross-
section lookup queue before running. We point out that we also have sorted the collision
queue lexicographically by nuclide in an outer ordering then energy within that, so an increase
in the performance with higher numbers of particles in flight can be seen. Interestingly, the
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Figure 3.20: Stided memory accesses cause a loss of coalescence. In generations beyond the
Titan V, the rate of performance decrease is relatively lower.

performance on the H100 continues to increase substantially as more particles are held in
flight, well beyond the number of CUDA cores on this card which is around 17,000.

Figure 3.22 shows the time spent in each type of kernel per particle in flight. We can see
that some time is saved compared to Fig. 3.10 by avoiding the sorting operation. However,
this benefit is outweighed by the reduced acceleration of the cross-section lookup which comes
as a result of less coalesced memory accesses. Overall, for any problem with a substantial
number of nuclides, we suggest sorting the cross-section lookup queue.

3.3.8 Cache-Free Cross-Section Lookups

As mentioned in section 3.2, OpenMC caches the microscopic cross-sections for later use.
In the event that a particle passes out of a material containing a given nuclide then returns
to another with that same nuclide, this eliminates the need to look up the microscopic
cross-section again.

It was found that this caching, while it does reduce the overall amount of work to do,
tends to result in a large number of divergent memory accesses that thwart the positive
effect of sorting the particle queue by energy as mentioned previously. After sorting the
cross-section lookup queue by energy, the particles will be ordered more-or-less randomly
as a function of their position in the particle array. Therefore, even if the memory accesses
to the cross-section grids are coalesced, the subsequent writing of microscopic cross-section
values to the cache are fully diverged.
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Figure 3.21: The particle tracking rate for the calculation without sorting the cross-section
lookup versus the baseline code on the H100.

Figure 3.22: The timing breakdown for the calculation without sorting the cross-section
lookup queue on the H100.
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Figure 3.23: The tracking rate for the calculation with microscopic cross-section caching
versus the baseline cacheless lookup method on the H100.

The best strategy for a GPU-based code, though, is to not cache these microscopic cross-
sections, even if it means more work is required to later sample the collision nuclide. For the
purposes of sampling the collision nuclide, the first lookup that precedes particle flight has
calculated the normalizing constant to the discrete distribution over the different nuclides.
The second pass made at collision time samples the nuclide given the normalizing constant
which is the total macroscopic cross-section. In addition to reducing the number of divergent
memory accesses, the large amount of cache space used for an array with an enormous number
of particles is freed. Figure 3.23 shows the detrimental performance impact explicitly; we
stopped the calculation before reaching the highest population counts to not waste further
time with this terribly GPU-unfriendly approach.

3.3.9 Speculative Collision Nuclide Sampling

Next, we explored a previoulsy unpublished scheme proposed by Tim Burke for sampling
the collision nuclide that reduces the amount of computational work to be done. Subsection
3.3.8 discusses the benefit of not caching the microscopic cross-sections. Without cached
total microscopic cross-sections, an additional loop over the nuclide cross-sections has to be
carried out to sample the collision nuclide, because the normalizing constant on the discrete
distribution is not known ahead of time. The probability of a collision taking place with
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nuclide i is proportional to σt,iNi, normalized by the total macroscopic cross-section.
In the baseline implementation of our code, the cross-section lookup kernel is usually

used to calculate macroscopic cross-sections. The kernel is templated on a boolean that
indicates if the look-up operation is for a collision. Before each collision, a different version
of the kernel is ran in which the same loop over nuclides is carried out, but instead the total
macroscopic cross section is used as a normalizing constant to compute a discrete cumulative
probability of each nuclide. When that cumulative probability exceeds a given pre-sampled
standard uniform random number, that nuclide is used to sample the collision. In essence,
this is the same method used by the CPU version of OpenMC. The only difference is that
microscopic cross-sections are recalculated rather than pulled from a cache.

The “speculative collision nuclide sampling” method can avoid this additional calculation
of the microscopic cross-sections before a collision. Is uses a fundamentally different method
to sample from a discrete distribution. To state it generally, let λ1, λ2, . . . be rate constants
for independent exponential random variables X1, X2, . . .. Then we have that

P
[
Xi = min {X1, X2, . . .}

]
=

λi
λ1 + λ2 + . . .

(3.1)

Equivalently, if we were to sample path lengths for neutrons traveling through a medium
consisting of each purely of nuclide and find the index of the shortest pathlength, the index
of that nuclide would have precisely the correct collision nuclide distribution.

This fact can be taken advantage of to speculatively sample a collision nuclide index in
the cross-section lookup operation without any normalizing constant being required. We call
this “speculative” because the collision may not take place. It may be that the neutron crosses
out of the material without ever using the collision nuclide index. Algorithm 6 describes the
method. If a collision ever takes place, the speculatively sampled nuclide index is used to
select the collision nuclide. Note that to avoid division by zero in the case of zero-density
nuclides, we take the maximum of the inverse pathlength rather than the minimum of the
path-length.

Figure 3.24 shows the results of using this method compared to the baseline imple-
mentation that did not speculatively sample the collision nuclide and instead carries out
an additional cross-section lookup operation before each collision. This method performs
slightly better at lower numbers of particles in flight, but falls short of the original method’s
performance when more particles come into play. This can be understood as being a re-
sult of the caching methods being used here. The code implementing this can be found at
https://github.com/gridley/openmc/tree/cuda_no_collision_xs_lookup.

Firstly, we can see that in the regimes where most memory accesses for the cross-section
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Function CrossSectionLookup(E):
max_inv_pathlength ← 0.0
collision_nuclide ← -1
macroscopic_total ← 0.0
for i_nuclide← 0 to n_nuclides− 1 do

sigma_t ← compute_cross_section(i_nuclide)
macro_contrib ← sigma_t * atom_density[i_nuclide]
inv_pathlength ← macro_contrib / (-Log(Unif()))
if inv_pathlength > max_inv_pathlength then

max_inv_pathlength ← inv_pathlength
collision_nuclide ← i_nuclide

end
end
store collision_nuclide
return macroscopic_total

Algorithm 6: Cross-section lookup algorithm with speculative collision nuclide sampling

lookup are uncoalesced, the method only slightly out-performs. This can be attributed to
the fact that most cross-section lookups are happening for higher energy neutrons which
travel over many fuel regions before a collision; therefore the amount of additional cross-
section lookups for collision nuclide sampling that has to take place is fairly small. Secondly,
because the majority of cross-section lookups in a thermal reactor problem are not used to
sample the collision nuclide, the uncoalesced memory access to store the collision nuclide
introduces latency that slows down the rest of the loop. At any given point in time, a
single thread caching the collision nuclide and its microscopic partial cross-sections might
be causing latency for the whole thread block because our code synchronizes threads in the
loop over nuclides. Without this, coalesced memory accesses to cross-section data would not
be expected. We can anticipate that in fast reactors, this method would under-perform even
more compared to the baseline technique because on average more regions will be crossed
between collisions.

On the whole, we suggest not using this method for reactor simulations. However, in
other applications with smaller numbers of nuclides or more optically thick material cells,
this method should be tested as it does reduce the total amount of computation that must
take place. Regardless, similar to the removal of the microscopic cross-section cahce, even an
infrequent, unfriendly diverged memory access can ruin performance. Considering that for
collision estimators of the depletion reaction rates a lookup operation should be carried out
before a collision anyway, we again emphasize that this method is not promising to improve
performance of depletion simulations of fission reactors.
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Figure 3.24: The tracking rate for the calculation with speculatively sampled collision nu-
clides versus the baseline code on the H100.

Modifications to Caching Behavior

In this subsection, we explored the different approaches to caching global memory accesses
presented by the CUDA compiler. In [28], the authors point out that they compiled the
code using the -Xptxas -dlcm=ca. In other words, the PTX assembler was instructed to
cache memory accesses at all available levels. Here, we quantify the efficacy of this approach
relative to some other caching options available in CUDA, and show that the choice of
memory caching method has practically no impact on performance when compiled with the
-O2 flag and link-time optimization. Table ?? summarizes the different possible options.
Figure 3.25 shows the performance of each, showing that no practical performance difference
can be discerned from each option.

Effects of GPU Code Linking Methods

We next explored two methods of linking CUDA code for our GPU-accelerated version of
OpenMC. By default, CUDA kernels cannot link to device code that is outside the trans-
lation unit (usually an individual file). Because including device code compiled from other
translation units often precludes various types of compiler optimization, this feature tends
to degrade performance. However, it enhances the maintainability of code by allowing the
huge swaths of physics code to be separated out from the main kernels.

Fortunately, over the course of this research, link-time optimization was developed and
released as part of CUDA 11 in 2020. This defers compiler optimizations until the linking
phase. While this adds a considerable amount of compile time that cannot be parallelized,
the performance gains are clear as shown in Figure 3.26 in which we compare the baseline
version of the code to a version compiled using relocatable device code. Interestingly, the
relocatable device code version outperforms below a threshold of around one million particles
in flight. However, in the high-performing regime which obviously is the only that should be
pursued, link-time optimization prevails. This performance difference can be attributed to
only kernels outside the cross-section lookup, because we do not call externally linked device
code in the most computationally sensitive part of the code.

Figure 3.27 shows the performance breakdown of the code using relocatable device code
rather than link-time optimization. The differences are hard to glean from the baseline
code, but we can see some differences upon closer examination. In the version using link-time
optimization, the surface crossing kernel shrinks to take up practically zero time when enough
particles are in flight, which is not true for using relocatable device code. Collision processing
takes more time when using relocatable device code rather than link-time optimization, and
particle advancing also takes slightly more time.
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Table 3.2: Summary of data cache load modifier (dlcm) options.

Option Description
-dlcm=ca Cache at all levels. This option caches global memory

loads at all levels of the memory hierarchy, including
L1 and L2 caches.

-dlcm=cg Cache in global memory only. This option disables L1
cache but allows caching in L2 and other higher levels
of cache.

-dlcm=cs Cache streaming. This option hints that the data is
not expected to be reused, so it prioritizes L2 caching.

-dlcm=wb Write-back caching. This option ensures that writes to
global memory are cached and later written back to
global memory.

-dlcm=wt Write-through caching. This option ensures that writes
to global memory bypass the cache and are written
directly to global memory.

Figure 3.25: The tracking rate for different XPTXAS DLCM options on the H100.
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Figure 3.26: The tracking rate for two different GPU code linking methods on the H100.

Figure 3.27: Timing breakdown for compiling with relocatable device code rather than link-
time optimization.
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3.4 Other Aspects of Porting the Code

3.4.1 The Global Block Lock Technique For Neighbor Lists

Neighbor lists are used to accelerate the search for the cell a particle is crossing into in
Monte Carlo particle transport codes [118]. Without neighbor lists, a particle which exits
a constructive solid geometry cell must search the entire universe of cells and evaluate each
surface expression until the containing cell is determined. With a neighbor list, the neigh-
boring cell IDs are cached and stored on each cell. All cells start with an empty neighbor
list. If a particle crosses out of the cell, the neighbors’ constructive solid geometry definitions
are checked. If none are found, a fallback is made to an exhaustive search through the whole
universe. After completing the exhaustive search, the new cell ID which was not previously
recognized as a neighbor is written to the neighbor list.

Completing this task in a thread-safe way is nontrivial enough to merit its own conference
paper [118]. Before this work, neighbor lists were implemented with a mutex thread locking
technique in OpenMP. The mutex ensures that duplicate cells are never added to the neighbor
list. Because multiple particles are processed concurrently on a multi-threaded CPU, it may
be the case that multiple particles simultaneously determine that a given cell must be added
to the list. When one thread acquires a mutex, it prevents others from appending that new
cell index to the list. The first thread would acquire the mutex and append to the list. The
second in this hypothetical situation would then acquire the mutex, but then determine that
the first had already inserted that index to the list.

On a GPU, mutexes are not only unavailable but also undesirable. Rather than a few
tens of threads executing concurrently, GPUs typically employ a few thousand. The use
of mutexes could result in disastrously slow performance as thousands of threads wait to
execute only one-at-a-time. A new approach to the problem would preferably be taken.

After considering this possibility for a bit, we determined that designing a new concurrent
data structure for this problem was not worth the effort. In a MC neutron or photon
transport simulation, only the first few particles have to append to the neighbor lists. As the
simulation runs, the fraction of time required for neighbor list operations becomes arbitrarily
low. In reactor neutronics computations, only the first one or two generations of particles
have to append to the neighbor list. Thousands of generations of particles are required for
the most computationally intense problems.

Despite our desire to simply use an off-the-shelf mutex and to accept the performance
penalty, as mentioned previously no such functionality is available on a GPU. Instead, we
developed a novel mechanism to implement a mutex on GPUs–an unwise choice in most
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situations but not this one. Algorithm 7 shows pseudocode for the method. Two separate
mechanisms are required to mutually exclude each thread and each thread block.

Function neighbor_list::push_back(new_elem)
for thread_id ← 0 to blockDim.x do

if threadIdx.x == thread_id then
while atomicCAS (lock, 0, 1) != 0 do

;
end
for i ← 0 to current_size do

if new_elem == buffer[i] then
atomicExch (lock, 0);
return;

end

end
if current_size == buffer_size then

trap;
end
buffer[current_size++] = new_elem;
atomicExch (lock, 0);

end

end
Algorithm 7: Pseudocode for CUDA push_back function

Firstly, when threads call this function, a loop over all threads is carried out. In other
words, each thread executes a loop with an inner statement checking the index of the thread.
Only that one thread that matches the current loop index is allowed to execute what follows.
This excludes the possibility of two threads from the same block trying to lock the neighbor
list at the same time. After the lock is acquired, the thread loops over the current elements
in the neighbor list to check for the presence of the element it will soon add. The maximum
size of the neighbor list has to be allocated in advance for this implementation. Lastly, if the
element was not found in the current neighbor list, the current size of the list is advanced
and the new element inserted accordingly.

The outer loop over threads solves a dead-locking problem that halts execution of the
program. We do not understand the cause of the dead-lock aside from that adding the loop
over threads solves it.
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3.4.2 Non-recursive Nested Universe Methods

The CUDA compiler is unable to determine the optimal number of registers to assign to each
thread when recursive functions are used. At the start of this work, the universe cell-finding
code in OpenMC was recursive. It was found in the author’s pull request to OpenMC https:
//github.com/openmc-dev/openmc/pull/1784/files that stack overflows tended to happen
in constructive solid geometry definitions with nested universes. This came as no surprise
because the CUDA compiler had warned about being unable to determine the correct stack
size.

To avoid the need for recursion that potentially leads to stack overflows, we implemented
a loop-based approach to nested universes rather than recursion. Algorithm 8 shows what
the code that tended to cause stack overflow on GPU looks like, and Algorithm 9 shows
the modification required to avoid recursion. In the former, the cell finding routine is called
recursively on the new universe that’s potentially been found nested inside a cell or lattice.
In the latter, a loop over each universe levels is carried out. The nesting index is incremented
in each iteration of the loop, which terminates after a cell filled with material is finally found.

3.4.3 On Random Number Reproducibility

In this study, we maintained exact reproducibility between the GPU and CPU versions of
the code. This greatly aided debugging because statistical comparisons between the two
code versions was not necessary. Many times in the course of code development, slight
differences in the eigenvalue returned by a problem immediately alerted us to an issue with
the code that may be very difficult to discover otherwise. For this reason, comparisons on
the eigenvalues and tallies were not presented in this chapter because they are identical to
the results obtained by the CPU version of OpenMC, which has been extensively validated
elsewhere.

This required using the same random number generator between the CPU and GPU
versions of the code. While CUDA does provide a library for random number generation,
it is primarily oriented towards computationally expensive, high quality random number
generation. We found that the PCG-LCG [119] random number generation performed ex-
cellently on GPU, as the randomness quality needs for generators in MC radiation transport
are minimal.
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Function find_cell_inner(particle):
found ← false;
cell_index ← NONE;
universe ← particle_current_universe(particle);
cells ← get_cells_in_universe(universe, particle);
foreach cell in cells do

cell_index ← cell;
if cell_universe(cell_index) != particle_current_universe(particle) then

continue;
end
if cell_contains_particle(cell_index, particle) then

set_particle_cell(particle, cell_index);
found ← true;
break;

end
end
if found then

announce_cell_entry(cell_index);
cell ← get_cell(cell_index);
if cell.type == MATERIAL then

set_material_and_temperature(particle, cell);
return true;

end
else if cell.type == UNIVERSE then

update_particle_coord_for_universe(particle, cell);
increment_particle_coord_level(particle);
return find_cell_inner(particle);

end
else if cell.type == LATTICE then

update_particle_coord_for_lattice(particle, cell);
increment_particle_coord_level(particle);
return find_cell_inner(particle);

end
end
return found;

Algorithm 8: Recursive Cell Finding
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Function find_cell_inner(particle):
found ← false;
cell_index ← NONE;
while true do

if cell_index == NONE then
universe ← particle_current_universe(particle);
cells ← get_cells_in_universe(universe, particle);
foreach cell in cells do

cell_index ← cell;
if cell_universe(cell_index) != particle_current_universe(particle)
then

continue;
end
if cell_contains_particle(cell_index, particle) then

set_particle_cell(particle, cell_index);
found ← true;
break;

end
end

end
if not found then

return found;
end
announce_cell_entry(cell_index);
cell ← get_cell(cell_index);
if cell.type == MATERIAL then

set_material_and_temperature(particle, cell);
return true;

end
else if cell.type == UNIVERSE then

update_particle_coord_for_universe(particle, cell);
end
else if cell.type == LATTICE then

update_particle_coord_for_lattice(particle, cell);
end
cell_index ← NONE;

end
Algorithm 9: Non-Recursive Cell Finding
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3.4.4 Re-ordering the nuclide loop

In the CPU implementation of OpenMC, it is perfectly reasonable to loop over nuclides as
they appear in a material in computing the cross-sections. This is the default approach to
the problem. We identified that the performance of the cross-section lookup operation can
be greatly degraded by following this approach and addressed it appropriately.

For example, consider two fuel materials with the nuclides of one being listed in reverse
order. The key to obtaining speedups on GPU with large numbers of cross-section lookups
is to sort the particles by energy so as to induce coalesced memory accesses to the pointwise
cross-section grids. This effect can be fully hampered if different threads are working on
different fuel materials–a common scenario in any practical depleted reactor problem.

To address this, we impose a global ordering on nuclides according to the order they were
loaded in. When a particle undergoes cross-section lookup, a loop over all nuclides occurring
in the problem is carried out. All materials have an additional array allocated matching
the length of the global nuclide array. At each position is the index of the nuclide in that
material. If the nuclide is not present, a specialized flag value like -1 can be stored. For
example, suppose there were two materials, water and zirconium hydride. Globally, three
nuclides might be present, 1H, 16O, and 90Zr. In this case, water would have the mapping
array [0, 1, -1], and zirconium hydride would have [0, -1, 1]. The nuclide order may be
changed in a material: for example if zirconium hydride defined hydrogen second, the array
would be [1, -1, 0].

By doing so, a single loop over the global nuclide ordering is carried out on each thread.
Only if the nuclide is present, the thread enters an if block to carry out cross-section
lookup. Otherwise, it idles. At the end of each iteration of the loop, __syncthreads() or
__syncwarp() can be called. We found that on the Titan V GPU, which came from the first
generation of GPUs with independent thread execution, this manual synchronization helped
the calculation speed. However, in the A100 and H100, it appears that the hardware now
plans ro-coalescence of the threads in an intelligent way to obviate the need for this.

By doing so, the performance of a GPU application is made insensitive to changes in the
ordering of nuclides of the material. Moreover, we found that on the Titan V GPU, manual
synchronization helped to partially alleviate the performance impact of using probability
tables. Again, we were unable to measure this benefit on the A100 and H100 GPU.
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3.5 Improved Windowed Multipole Method on GPU

It was shown in [120] that the windowed multipole (WMP) method [71] substantially under-
performed compared to using traditional pointwise cross-sections. In this section, we show
that the WMP method can outperform pointwise cross-sections for reactor simulations in
the general case. This relies on one main technological advance for WMP and one removal
of an unrealistic modeling assumption for GPU MC computational benchmarking.

Firstly, we will review the results obtained in [120]. The authors reported a tracking
rate of 112,000 particles/second on four P100 GPUs when using pointwise continuous energy
cross-sections, and 52,000 particles/second using the same setup but with windowed multi-
pole cross-sections. The authors report using a temperature for this depleted reactor problem
that allows a single temperature for the pointwise cross-sections which was deemed “conser-
vative”. The conservatism in this case is to find the case least favorable to WMP methods,
which expected to perform better both in terms of accuracy when pointwise libraries must
interpolate between temperatures; its signature advantage is physical temperature handling.
At the same time, interpolation in temperature on a GPU can incur a serious computational
penalty as a result of the additional memory accesses that have to take place.

Figure 3.28 shows timing breakdown for each kernel type when running in windowed
multipole mode for a cold isothermal reactor simulation.

Figure 3.29 shows the tracking rate of pointwise and WMP cross-sections at two tem-
peratures. To refer to the simulation as “WMP” alone is somewhat of a misnomer, because
pointwise cross-sections must be used above the unresolved resonance threshold. We present
in a later chapter a new method for modeling the unresolved resonance region which can
overcome this barrier, but point out that the drawbacks of pointwise cross-sections still come
into play when WMP is used just to a lesser extent.

The room temperature case was chosen because it coincides with an evaluation of point-
wise nuclear cross-sections. One-thousand and fifty kelvin was chosen carefully: this is the
midpoint between the 900 kelvin and 1200 kelvin temperature points in OpenMC’s native
ENDFB/VIII.0 nuclear data library. As a result, stochastic interpolation leads to memory
accesses to two entirely different cross-section grids each half of the time. This degrades
performance, as shown by Fig. 3.29. In fact, we can see that WMP outperforms pointwise
cross-sections. These conclusions fundamentally differ from those presented in [120]. Paired
with WMP’s superiority in physically accurate temperature interpolation, we suggest not
only the use of but also extension of WMP for GPU computations. Much potential research
remains along the same vein of moving from linear interpolation tables to physics-based
numerical models. Our next chapter advances in precisely that direction.
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Figure 3.28: Timing breakdown for using windowed multipole cross-sections.

Figure 3.29: Tracking rate for windowed multipole mode versus baseline pointwise mode on
the H100 at two reactor temperatures.
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Multipole supremacy on GPU was achieved with a single key numerical technique. This
started with Dr. Forget’s recognition that the numerical methods for the Faddeeva func-
tion, a key computational aspect of WMP that enables the analytical handling of Doppler
broadening, were bound to under-perform on GPU. The Faddeeva function can be defined
for ℑ[z] > 0 as:

w(z) =
i

π

∫ ∞

−∞

e−t2 dt

z − t (3.2)

The mainstream library for calculating the Faddeeva function was also written at MIT
[121], and includes numerous branches to handle all possible use cases of the Faddeeva
function. The extensive branching yields poor performance on GPUs for reasons discussed
in the introductory chapter, and moreover, given the uncertainties inherent to nuclear cross-
sections, the usual w(z) implementation’s target of a few ulps of precision of a 64-bit number
is excessive.

Plenty of research in the past has explored faster ways of calculating the Faddeeva func-
tion, one key example from nuclear engineering being developed as part of the classic MC2

code [122]. More references on Faddeeva function calculation can be found in our paper
[123].

In that work, we explored the benefit of a simple approximation to the Faddeeva function
for the purposes of the windowed multipole method. It relies on the fact that in the context
of windowed multipole, we have that ℑ[z] > 0 which allows a removal of a branch to handle
the ℑ[z] < 0 that introduces a discontinuous principal value term, requiring a branch in a
computer implementation. We can shift the line of integration down to the lower half of
the complex plane because it forms a closed loop in the complex plane. Because shifting
downward never encloses a pole, a Gauss-Hermite quadrature can be applied to Eq. 3.2 to
approximate w(z). It was Humliček that identified the ability of a Gauss-Hermite quadrature
to to immediately obtain a complex rational approximation [124]–[126]. The downward shift
serves to reduce the impact of nearby poles of w(z) when z has a small imaginary part.

Figure 3.30 shows regions in which the Faddeeva function must be frequently evaluated
for a typical problem involved windowed multipole data. A depleted PWR fuel assembly
with temperatures ranging from 600-900K was simulated, and whenever w(z) was evaluated,
the value of z was saved. The probability density in C could then be estimated, which guides
where w(z) should be approximated best.

It was shown in [123] that the use of an approximation to w(z) yielded accurate results
both in terms of the spatial fission distribution and the eigenvalue for a typical fuel assembly
problem. Moreover, it was found that even in a CPU-based code, a problem with strongly
varying temperatures between fuel pins can be solved more efficiently using windowed mul-
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Figure 3.30: Frequency of evaluation of w(z) for a depleted PWR assembly problem.

tipole than pointwise cross-sections due to the high rate of microscopic cross-section cache
misses with strongly varying temperature.

The C++ code we wrote using a downward shift value into the lower complex plane is
listed in Appendix B for the convenience of others. Notably many coefficients appear with
zero real or imaginary parts. In our experience, modern compilers are able to propagate hte
zeros through the following expressions to avoid unnecessary arithmetic, but this potentially
is not applied at lower optimization levels. That is to say, our efforts algebraically propagate
zeros through to cancel many terms in the rational approximation were in vain with modest
compiler optimizations enabled. Nonetheless, our CUDA implementation manually expands
all terms to avoid multiplication by zero and can be found in the aforementioned Github
repository in include/cuda/calculate_xs_kern.h.

3.6 Discussion

We have presented some novel software development techniques for enabling easier transition
of large continuous energy neutron MC code to GPU execution, and examined the efficacy
of some previously employed optimizations to improve the particle tracking rate. We hope
other researchers in this area can make use of the code presented in the cuda branch of the
public repository github.com/openmc-dev/openmc.

Our experience in measuring and optimizing the performance of a continuous energy GPU
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Figure 3.31: Performance comparison of two GPU OpenMC implementations on A100 with
Tramm’s Hoogenboom-Martin large benchmark.

MC neutronics code came with a few key lessons. Firstly, the maturity of GPU software
toolchains is only just reaching the point to obtain practical performance on GPUs. Simply
by moving from CUDA 11 to CUDA 12, our implementation’s performance increased by
nearly a factor of two. This took it from being substantially less performant than the other
implementation of OpenMC on GPU that used OpenMP offloading presented in [54] to being
on similar footing, as shown by Fig. 3.31. We must point out that later results from Argonne
[127] reported a maximum tracking rate of 425,000 particles/second rather than 350,000, but
do not present a scaling curve.

The Argonne work [54] also presents a comparison against a typical server CPU, an Intel
Xeon 8180M with 56 CPU cores. It obtained a particle tracking rate in history mode around
100,000 particles/second. In other words, both GPU codes performed equivalently to about
196 CPU cores. Argonne’s later improved results [127] reported 425,000 particles/second
rather than 350,000, or in other words being equivalent to around 240 CPU cores. Our
results for the H100 GPU are therefore equivalent to about 280 CPU cores, and Argonne’s
results in [127] are equivalent to about 360 CPU cores. We can contrast this against the
discussion presented in the 2018 work [56] in which the author points out most GPU MC
codes were unable to pass about thirty CPU cores’ equivalence. Clearly, this barrier has been
shattered in the years after 2018, and continues to widen as shown in [127]. This continual
advancement of GPU MC codes has likely occurred as a result of advancements made to
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improve effective memory bandwidth in scattered accesses as illustrated by Fig. 3.20.
A second important lesson is that conclusions in the optimal approach for Monte Carlo

neutron transport can vary based on the number of particles in flight. For example, based
on Fig. 3.26, we might conclude that relocatable device code is the optimal choice if only
a relatively small number of particles were simulated. On the other hand, link-time opti-
mization wins at higher particle counts. Similarly, structure-of-array wins at higher particle
counts but not lower ones as shown by Fig. 3.15.

This code did not implement tallies as a result of lessons learned in the process of writing
the CUDA code. It was initially thought at the outset of this project that a novel contribution
would be development of a maximally shared code between the CPU and GPU versions of
the program. Despite the opportunity for shared code, the paradigm shift is so strong that
practically all aspects of the code have to be reconsidered. In the prior sections, we proved
that the optimal techniques in a GPU-based MC code almost always differ from the optimal
techniques on a CPU. For this reason, tallies were not implemented.

Tallies already introduce considerable overhead to CPU-based Monte Carlo calculations
as a result of their intensive memory access pattern. The general architecture of tallies in
OpenMC is to push back filter bin index and weight combinations to a per-particle temporary
array which is later processed in a scoring routine. On a GPU, the filter bin matching and
scoring processes should be united to avoid numerous uncoalesced memory accesses. The
scoring system would be less general than the mainline OpenMC tallying system. However,
its extreme flexibility is not necessary for practical reactor computations which often need
a very specific set of tallies only: power in each cell, depletion reaction rates in each cell,
among a few others.
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Chapter 4

Fast Resonance Upscatter Sampling with
Windowed Multipole Cross Sections

This chapter is based on the following paper:

Ridley, Gavin, Benoit Forget, and Timothy Burke. “Resonance Scattering Treat-
ment with the Windowed Multipole Formalism.” Nuclear Science and Engineering
193, no. 3 (May 25, 2023): 1–25. https://doi.org/10.1080/00295639.2023.2204810.

The code discussed in this chapter can be found at https:// github.com/ gridley/ openmc/
tree/mars.

4.1 Introduction

Early continuous energy Monte Carlo neutron transport programs sampled scattering from
nuclei in thermal motion assuming that the scattering cross section is effectively constant
within the scattering kernel [128]. However, as [129], [130] detail , the resulting scattering
kernel implied by the constant cross section approximation may be far from the actual
double-differential cross section near a scattering resonance. As shown in [131], [132], the
resulting error tends to cause a worst-case 11% underestimation of the Doppler feedback
coefficient in a PWR, with even larger discrepancies in HTGR problems.

As exhibited by the PRAGMA project [29], [133], the conventional methods for treating
this effect leave something to be desired on graphics processing unit (GPU) architectures,
which constitute the majority of computational power on most leading supercomputers. Due
to the unique architecture of the GPU, algorithmic modifications to standard Monte Carlo
algorithms for neutron tracking can tangibly accelerate computation [29]. In the same di-
rection, we herein present a GPU-friendly method for handling resonance upscatter when
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the windowed multipole (WMP) [71] formalism is employed to represent cross sections. In
particular, the heuristic for fast GPU code is to avoid rejection sampling and accesses to
distantly spaced places in memory, which the new method achieves. To give context to the
new method, we first recall some of the conventional methods for modeling resonancekup-
scattering.

The Doppler Broadening Rejection Correction (DBRC) [134] was one of the early pro-
posed techniques to treat the effect of strong variations of the interaction cross section
within the energetic vicinity of a scattering neutron, whereas S(α, β) tables had been used
prior [135]. The method has since been implemented in numerous continuous energy Monte
Carlo neutron transport programs [134], [136]–[138], and has shown to successfully model
the resonance upscatter effect. However, DBRC suffers from rejection probabilities as high
as 99.995% [99] for neutron energies in the vicinity of a resonance.

The weight correction method (WCM) [131] also successfully models the effect of res-
onances on the double-differential cross section of nuclei in thermal motion. This method
adjusts the weight of particles to provide numerically correct results even when the constant
cross-section double-differential free gas distribution is employed. WCM carries the same
benefit of our newly proposed method of not requiring an additional rejection loop or tables;
however, adjustments to the particle weights introduce substantial variance to the overall
Monte Carlo simulation, thus degrading estimates on quantities of interest [133].

Another technique known as target motion sampling (TMS) [139] can be used to model
the resonance upscatter effect. However, this method is only applicable to Monte Carlo neu-
tron transport programs employing the delta tracking technique. Unfortunately, performance
of delta tracking appears to be lackluster on GPUs [63].

The relative velocity sampling (RVS) method [99], [140] was created to ameliorate the
high rejection rates characteristic to the rejection algorithms used to model resonance upscat-
ter. These schemes, in essence, sample probability distributions proportional to f(x)g(x),
where f(x) is a distribution and g(x) ∈ [0, 1]. One then samples from f(x) and accepts the
sample with probability g(x). The RVS method moves the direct sampling from the thermal
motion term to the cross section term, thus worsening the average case rejection rate but
massively improving the worst-case rejection rate.

Despite this improvement, even moderate rejection rates harm performance on GPUs
in an outsized fashion. GPUs offer promise for extremely high performance Monte Carlo
transport calculations, e.g. full-core PWR cycle depletion calculations on small computer
clusters [29]. This power comes with limitations of the GPU computing paradigm. The single
instruction multiple thread (SIMT) parallelism strategy employed by GPUs offers power and
computational efficiency advantages, but requires special attention to designing the tracking
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algorithm. For example, if there are t threads executing in parallel, it was shown in Chapter
2 that the expected number of rejection loop iterations with rejection rate ρ grows from
1/(1− ρ) in the single thread case to:

(mean samples before acceptance) ≈ log
(
2(ρ− 1)t(log ρ)−1

)
log(ρ−1)

+ 1 (4.1)

where t is the number of threads in the execution unit, depending on the synchronization
and kernel launch settings of the program. Since t is often around 256, this would imply
that a rejection loop with a 99% rejection probability would grow from requiring around 100
iterations to around 620 iterations.

The relative speed tabulation (RST) method [133] was developed to address the rejection
sampling performance impact on GPUs. RST is the first resonance upscatter modeling
technique not requiring a rejection loop or bivariate scattering distribution tables. The key
observation underlying RST is that the target velocity distribution can be factorized into
a marginal relative speed distribution encapsulating the information about the resonances
and a simple distribution of the target polar angle conditioned on the target relative speed.
Consequently, the univariate relative speed cumulative distribution can be tabulated in select
areas of the pointwise cross-section, and the conditional polar angle distribution is then
directly sampled without requiring any additional data or rejection step.

Despite its simplicity and efficacy on GPUs, the RST method comes with some clear
disadvantages. Gigabytes of additional memory are used in storing the relative speed cu-
mulative distributions (CDFs) at each energy point and temperature on a pointwise cross
section representation, if all nuclides have the resonance upscatter effect treated. The reso-
nance influence on the double differential cross section is thus restricted for practical reasons
to a select few nuclides in the problem to avoid extreme memory usage. Moreover, the
method introduces some discretization error in temperature, although this was shown to be
a reasonable approximation. Lastly, the ultimate flaw of RST stems from its fundamental
incompatibility with the windowed multipole formalism, an efficient, physics-based format
for storing nuclear cross sections. While RST naturally shoehorns into a code employing
pointwise cross sections, its is of minimal applicability to windowed multipole based calcu-
lations.

If one could avoid pre-tabulated relative speed distributions, this could substantially
reduce the memory needs and avoid costly divergent memory accesses. Reducing serialized
memory accesses on GPUs typically leads to significant speedups.

We propose a new method which does just that, and achieves this using the WMP cross
section representation [71]. Our new method introduces a novel special function we have
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deemed the incomplete Faddeeva function which encodes the behavior of the temperature-
dependent influence of resonances on the double differential scattering distribution. It relies
on the numerical inversion of the analytic representation of the relative speed distribution
under the WMP formalism, and polar angle sampling in the same manner as the RST
method, but without any precomputed tables.

This contrasts the WMP-based target velocity sampling technique presented in [141],
which is similar in nature to the newly presented method in this work. However, [141]’s
method relies on the separation of the target velocity distribution into a zero kelvin cross
section component and a Maxwell-Boltzmann component. This method thus requires a
numerical inversion step of the integrated scattering cross section function wrapped in a
rejection loop, similar to [99] but instead using a functional representation of the integrated
cross section rather than tabular.

The algorithm presented in [142] shows how the relative speed can be sampled in the
windowed multipole framework similarly to our work. However, [142] relies on fitting a sum
of Gaussians to replace the poles in Eq. 4.5, thus representing the zero kelvin scattering
cross section in the form:

σ(E) =
1

E

∑
k

∑
j

[
hs,k,je

(
√
E−uk)

2
/w2

s,k,j + ha,k,je
(
√
E−uk)

2
/w2

a,k,j

]
(4.2)

While it remains to be seen that Gaussians can be used to approximate all poles appearing
in a windowed multipole library, this proposed approximation introduces a considerable
number of degrees of freedom to the problem, with eighteen unknowns for each pole. The
optimization problem thus encountered is highly nonlinear and nonconvex leading to fitting
difficulties. Additionally, scattering kernels in [142]’s formalism cannot be straightforwardly
differentiated with respect to windowed multipole parameters which would be needed to
perform sensitivity analysis.

Our new method, multipole analytic resonance scattering (MARS), only requires the
same windowed multipole data as would be used in a calculation without any treatment of
the resonance upscatter effect, avoiding the need for additional tables or fitting steps. We
demonstrate the new method’s negligible performance overhead compared to other methods
for sampling the resonance upscatter effect on both CPU and GPU architectures.

4.2 Theory

Rothenstein et. al. [129] expounds the rigorous Doppler broadened double-differential cross
section. Since the exact expression for the lab frame scattering distribution is quite com-
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plicated, authors presenting algorithms to model it typically choose to forgo the lab frame
expression and instead reason in terms of joint distributions of the target velocity and direc-
tion cosine relative to the direction of projectile motion. After sampling the target speed and
direction cosine, standard two-body collision kinematics for elastic scattering are employed,
where the center of mass angular distribution comes from the nuclear data file. The resulting
physics matches the complicated expressions of [129].

Similarly considering the distribution of collision target velocities, this joint distribution
is:

f(V, µ) = Cvrσ(vr)M(T, V )f ′(µ) (4.3)

where M is the Maxwell-Boltzmann distribution of target speeds:

M(T, V ) =
4√
π
β3V 2e−β2V 3

(4.4)

and the variable with units of inverse velocity β =
√

A
2kT

parameterizes the target velocities,
and the distribution f ′(µ) is a uniform distribution between -1 and 1. The other variables
are C, the distribution’s normalizing constant; vr, the relative speed of the neutron with
respect to the target; σ, the zero kelvin scattering cross section; A, the target mass; k, the
Boltzmann constant; T , the absolute temperature; and V , the target speed.

Classically, the approximation that σ(vr) is constant has been employed. However, it
was shown in [130], [131] that this approximation is incorrect in the vicinity of resonances,
where σ(vr) varies over a few orders of magnitude, preferentially causing scattering with
targets of relative velocity more closely matching the scattering resonance peaks. The various
aforementioned techniques are all just methods for sampling from the distribution of Eq. 4.3
with arbitrary forms of the function σ(vr).

More specific knowledge about the form of σ(vr) can be employed. It has been shown
extensively [143], [144] at this point that the cross section is accurately represented as a sum
of poles in addition to a low order Laurent expansion (N ≈ 7), vis:

σ(E) =
1

E

ℜ
∑

j

rj

pj −
√
E

+
N∑

n=0

anE
n/2

 (4.5)

In fact, for the purposes of sampling the resonance upscattering effect, we claim and later
numerically demonstrate that the narrow range of attainable vr leads the zero-kelvin cross
section to be accurately represented as a single pole and a linear term, over a sufficiently
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narrow range of energies:

σ(E) =
1

E
ℜ
[

rj

pj −
√
E

]
+ σ0 + σ1

√
E (4.6)

The σ0 and σ1 terms are calculated through a linearization process to avoid some complexities
with higher order polynomial fitting. An algorithm for finding the best values of σ0 and σ1

is presented in section 4.2.4.
With this approximation, we use the technique developed in [133]: rather than attempting

to sample the target speed (V ) and direction cosine (µ), one instead samples first the relative
velocity vr, and then samples µ from the distribution of µ conditioned on vr. The distribution
in this form for projectile speed v is thus [133]:

P (vr|v) =
(
e−β2(v−vr)2 − e−β2(v+vr)2

)
v2rσ0(vr) (4.7)

Next, as previously shown for Doppler-broadening of the Windowed Multipole format [71]
and the original full multipole format [145], we note the term e−β2(v+vr) to be negligible and
use the following:

P (vr|v) ≈ e−β2(v−vr)2v2rσ0(vr) (4.8)

At this point, we write the multipole cross section in terms of the relative velocity rather
than in terms of energy. The nonrelativistic approach is quite accurate for neutrons in
the epithermal range. One must mind the fact that resonances tend to be of the same
width at high energy, so the resonance upscatter effect still exists at high energy where
relativistic formulae should be employed. However, two effects cause resonance scattering at
high energies to be negligible. Firstly, the scattering kernel is wide compared to the widths
of resonances. Secondly, due to the 1/E spectrum encountered in thermal reactors where
the resonance upscatter effect has a tangible influence, less neutrons make collisions at these
energies in the first place. Therefore, high energy resonance-influenced scattering can be
entirely neglected, as it has been over 1 keV in the past [99] and given excellent results.
That being said, the formula to use is:

σ(vr) =
2

mnv2r
ℜ
[

rj
pj −

√
2mnvr

]
+ σ0 + σ1

√
2mnvr (4.9)

If we define the auxiliary variables x = β(vr − v) and y = βv, and insert Eq. 4.9 in the
marginal target collision rate distribution in terms of relative speed, Eq. 4.8, some algebra
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reveals that:

p(x|y) = e−x2

(
ℜ
[
βrj
z − x

]
+ β−2(x+ y)2 (σ0 + σ1x)

)
(4.10)

where z = βpj − y, which represents a dimensionless measure of the energy gap between the
center of the Maxwell-Boltzmann distribution and the location of the resonance.

At this point, we can consider the CDF for the random variable x (dimensionless target
velocity) conditioned on y (dimensionless projectile velocity). Integrating Eq. 4.10 yields:

CP (x|y) =
∫ x

−∞
e−x′2

(
ℜ
[
βrj
z − x′

]
+ β−2(x′ + y)2

(
σ0 + σ1x

′)) dx′ (4.11)

where C is the normalizing constant. After distributing the integral and interchanging the
ℜ operator with integration, we obtain:

CP (x|y) = ℜ
[
rjπ

iβ−1
w(z, x)

]
+
β−2σ0

4
(−2e−x2

(x+ 2y) +
√
π(1 + 2y2)(1 + erf(x)))+

1

2β2
σ1e

−x2 (
1 + (x+ y)2 +

√
πy(1 + erf(x))

)
(4.12)

where the normalizing constant for the distribution is:

C = ℜ
[
rjπ

iβ−1
w(z)

]
+

√
π

2β2

(
σ0(1 + 2y2) + σ1y

)
, (4.13)

which we point out is nothing more than the Doppler-broadened scattering cross section at
temperature T under the single pole approximation.

The new special function we deem the “incomplete Faddeeva function” is defined as:

w(z, x) =
i

π

∫ x

−∞

e−t2

z − t dt (4.14)

And it can easily be seen that w(z,∞) = w(z) as per the definition of the Faddeeva function
for ℑ[z] > 0:

w(z) =
i

π

∫ ∞

−∞

e−t2

z − t dt (4.15)

Indeed, for this application, ℑ[z] > 0 and we maintain this assumption going forward. A
specialized root finder has been developed to quickly invert this CDF and consequently
sample the relative velocity. This thus constitutes a method to sample target velocities
without rejection sampling or extensive tables.

The novelty in our approach lies entirely in the treatment of the zero kelvin cross section
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and analytical representation of the relative speed cumulative distribution. After sampling
from the relative speed distribution, we must sample the target polar angle distribution
conditioned on the relative speed as done in [133]. For completeness, we conclude with the
CDF of the target speed:

C(V |vr) ∝


0 V ≤ |vr − v|
1− e−β2V 2 |vr − v| < V < vr + v

1 vr + v ≤ V

(4.16)

for which [133] provides a straightforward sampling technique. The remaining work is purely
numerical, particularly in requiring an efficient, reasonably accurate algorithm for the incom-
plete Faddeeva function w(z, x).

4.2.1 The Incomplete Faddeeva Function

The forthcoming discussion explores the properties of the incomplete Faddeeva function,
with a particular focus on properties which can be leveraged to obtain efficient numerical
approximations to it. We advise the reader that absorbing this section in depth is not
necessary to grasp the claims and algorithms made herein. Rather, this section stands as a
necessary mathematical building block that constitutes our new method and can be viewed
as a black box by the uninterested reader.

The incomplete Faddeeva function, as defined by Eq. 4.14 is w : C×R→ C. This section
attempts to build some intuition as to how this function behaves as z and x individually
vary. In resonance upscatter treatment, z parametrizes the location, height, and width of the
resonance with respect to the Maxwell-Boltzmann distributed velocities. Values of ℜ[z] = 0

correspond to scattering resonances exactly situated at the mean component of relative speed
along the neutron’s line of flight predicted by the Maxwell-Boltzmann distribution. Values of
ℜ[z] > 0 correspond to resonances at higher energies than the particle’s energy, and therefore
induce preferential scattering with relative velocities higher than the incident velocity, and
vice-versa for ℜ[z] < 0. x parametrizes the dimensionless target relative speed. Small values
of ℑ[z] imply tall, narrow resonances, with a limit of ℑ[z] = 0 being a singularity representing
a resonance of infinite cross section. Large values of ℑ[z] model wider, weaker resonances.

Fig. 4.1 plots the incomplete Faddeeva function as a function of z for a few values of x,
and Fig. 4.2 shows the behavior of its real part in x for a few values of z. Both illustrate
the rapidly varying behavior of this function for small values of ℑ[z] when ℜ[z] ≈ x, where
a sharp peak follows the value of x near the real line. Fig. 4.1 particularly shows the
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approach to the familiarly shaped w(z) as x → ∞. The figures also show that ℜ[w(z, x)]
is an increasing function in x, as would be expected of a cumulative distribution function.
This behavior is explained by the following asymptotic analysis.

Humliĉek [146] provides the following asymptotic formula for the Faddeeva function with-
out derivation:

w(z) ≈ i√
πz

. (4.17)

Considering the definition of the Faddeeva function once more in Eq. 4.15, This approxima-
tion results from supposing that if z is large, and that only values of t near zero contribute
to the integral, we can approximate w(z) as:

w(z) ≈ i

π

∫ ∞

−∞

e−t2

z
dt (4.18)

which immediately yields the asymptotic estimate of Eq. 4.17. Proceeding with the same
approximation in the context of the incomplete Faddeeva function, we thus obtain:

w(z, x) ≈ i

2
√
πz

(
erf(x) + 1

)
if |z| ≫ 1 (4.19)

Suggesting a close connection between the incomplete Faddeeva function’s behavior in x and
the error function. In fact, this hunch is confirmed by the following identity which connects
the incomplete Faddeeva to the standard Faddeeva function:

w(z, x) =
1

2
(1 + erf(x))w(z) +

ie−x2

π

∫ ∞

0

e−t2e2itz dt

i(x− z) + t
(4.20)

Proof of this relation is provided in Appendix A.
An even more accurate asymptotic estimate can be obtained for large ℜ[z], approximating

the pole term as
1

z − t ≈
1

2z

(
1 + e2t/z

)
. (4.21)

This matches the value, slope, and curvature with respect to t of the pole about t = 0.
Substituting this back to Eq. 4.14 and adjusting the expression such that ℜ[w(z, x)] is
strictly increasing (as suggested by Eq. 4.19), and matching the asymptotic value of w(z)
as suggested by Eq. 4.20, results in

w(z, x) ≈ 1

2

(
1 + erf

(
x−ℜ[z]−1

))
w(z) . (4.22)

Eq. 4.22 is sufficiently accurate to be used in practical computations, as shown by Fig. 4.3.
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Figure 4.1: w(z, x) for a few values of x. The height represents the magnitude, and coloring
is done by phase.
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Figure 4.2: ℜ[w(z, x)] for a few values of z. The legend is the imaginary number added to the
real part specified in each figure’s caption. The plotted quantity is normalized by ℜ[w(z)]
so all lines tend to unity as x grows.
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Figure 4.3: Accuracy of the w(z, x) approximation for |ℜ[z]| > 5. An unshifted error function
is shown for comparison, representing a more naive asymptotic approximation to w(z, x).

In the context of resonance scattering, Eq. 4.22 shows that the relative speed distribution
gets shifted forward by a nondimensionalized factor of 1/ℜ[z] with its influence scaling by
ℜ[rjw(z)] times the resonances residue as suggested by Eq. 4.12.

Another useful property of the incomplete Faddeeva function is a simple connection
between its derivative in the complex plane and its value. This is similar in nature to the
derivative of the Faddeeva function [98]:

dw(z)

dz
=

2i√
π
− 2zw(z) (4.23)

The relation we have obtained generalizes this as:

dw(z, x)

dz
=

i√
π

(
1 + erf(x) +

e−x2

√
π(x− z)

)
− 2zw(z, x) (4.24)

which clearly maintains consistency with Eq. 4.23 as x→∞. This fairly simple connection
between the derivative of w(z, x) and its value can be utilized for efficient sensitivity analysis
of the scattering kernel with respect to windowed multipole parameters.

The forthcoming discussion presents some further concepts in the direction of efficient
numerical evaluation of the incomplete Faddeeva function. Going forward, we denote the
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second integral appearing in Eq. 4.20 as:

I(z,m) =

∫ ∞

0

e−t2e2itz dt

im+ t
(4.25)

where R ∋ m = x − z. While it may seem that a half-range Gauss-Hermite quadrature
may work well to efficiently approximate Eq. 4.25, this is not the case. Firstly, complex
exponentials would have to be calculated at each quadrature point. Secondly, as the real
part of z grows, the integrand oscillates more. In practice, values of ℜ[z] > 10 are frequently
encountered, and low degree quadratures would not capture the oscillation. Additionally,
given that the value of ℑ[z] is small, the denominator becomes nearly singular when x ≈ ℜ[z].
In fact, when ℑ[z] = 0, I(z,m) becomes a discontinuous function in x when interpreted as
a principal value integral.

Eq. 4.25 is equivalent to the incomplete Goodwin-Staton integral, referred to in [147].
However, to our knowledge, only asymptotic analysis has been performed on this type of
integral before, without any development of numerical routines. Recent work in the field
of finance [148] presents results for computing what the authors define as the extended
incomplete Goodwin-Staton integral, for which the ν = 1 case is of interest in the present
discussion. Unfortunately, the authors’ numerical method works for all cases except ν = 1,
suggesting Eq. 4.25 to be of a fundamentally different nature.

In our experience, the difficulty with large ℜ[z] cannot be ameliorated by a stationary
phase technique [149], as these tend to accentuate the pole behavior and remain of similar
difficulty for half range Gauss-Hermite quadrature.

I(z,m) satisfies a scaling property:

I(z,m) = I(az,m/a) (4.26)

where a ∈ R.
In the windowed multipole method, ℑ[z] is near zero, as shown in Fig. 4.4. Therefore,

we can expect to frequently encounter nearly singular integrands in Eq. 4.25. An efficient
numerical technique which explicitly treats this behavior can be devised by first noticing
that I(z,m) satisfies this differential equation in the complex plane:

dI

dz
+ 2zI =

1

x− z (4.27)

This can be used to connect the value I(z0, x) at a point z0 to another point z1. The
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Figure 4.4: Distribution of imaginary part of the poles in the windowed multipole method.
These were collected from every nuclide in OpenMC’s regression testing dataset, based on
ENDFVII.1.

integrating factor technique shows that:

I(z1, x) =

∫ z1

z0

et
2−z21 dt

x− t + ez
2
0−z21I(z0, x) (4.28)

If the distance between z0 and z1 is small, the exponential in the numerator of Eq. 4.28 can
be Taylor expanded about z0 to yield an efficient numerical scheme.

We have found that the imaginary part of I(ℜ[z], x) can be calculated with a closed-form,
discontinuous-in x formula. Because the nearly discontinuous behavior of I(z, x) in x is the
main source of difficulty here, Eq. 4.28 can be used to resolve this behavior accurately after
calculating the value of I(ℜ[z], x). The real part of I(ℜ[z], x) is continuous in x but not
available in formula in terms of elementary functions; however, it is readily amenable to
numerical approximation. In conclusion, the real and imaginary part of I(ℜ[z], x) contrast
each other: the former is readily numerically approximated by series or similar methods,
whereas the latter is discontinuous and therefore not amenable to series or rational function
approximation, and fortunately has an exact formula.

The first goal at hand is to calculate ℑ[I(z,m)] for real values of z. This can be written
as:

ℑ[I(z,m)] =

∫ ∞

0

e−t2
(
t sin(2zt)−m cos(2zt)

)
dt

t2 +m2
. (4.29)

The linearity of integration can be distributed over both trigonometric terms. Each of the
resulting integrals can be found as respective sine and cosine transform integrals, which are
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listed in [150]. Combining results from the sine and cosine transform tables yields:

ℑ[I(z,m)] = πe−z2+(m+z)2
(
1

2
erf(m+ z)− sign(m)

)
z ∈ R (4.30)

Next, we can find an approximation for the real part of I(z,m):

ℜ[I(z,m)] =

∫ ∞

0

e−t2
(
t cos(2zt) +m sin(2zt)

)
dt

t2 +m2
. (4.31)

This expression can neither be written terms of elementary nor special functions, to our
knowledge. In order to manipulate it to obtain a numerical expression, consider the auxiliary
function:

R(z,m) =

∫ ∞

0

e−t2 sin(2zt) dt

t2 +m2
(4.32)

which again, of course, cannot be represented in terms of elementary or special functions.
This pinpoints the difficulty in calculating the real part of I(z,m) because:

ℜ[I(z,m)] = mR(z,m) +
1

2

∂R

∂z
. (4.33)

We thus seek a straightforwardly differentiable approximation to R(z,m). The intuition
behind our forthcoming numerical approximation to R(m, z) comes from the fact that for
m ≫ 1, t is negligible in the denominator compared to m over the range where the e−t2

weighting is large, hence

R(m, z) ≈ 1

m2

∫ ∞

0

e−t2 sin(2zt) dt =
1

m2
F (z) (4.34)

where F (z) is the Dawson F function [98]. By standard asymptotic analysis, matching the
z derivative at z = 0 and the z ≫ 1 asymptote for the Dawson F function results in the
improved estimate:

R(m, z) ≈ 1

m

√
em2E1(m2)F

(
mz
√
em2E1(m2)

)
(4.35)

which is accurate to within about 5% across the full range of m values. However, this level
of accuracy is not appropriate for engineering calculations.

This led us to pursue approximations to R(m, z) of the form:

R(m, z) ≈ 1

m
g(m, z)F

(
mzg(m, z)

)
(4.36)
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which guarantees the correct large z behavior and small z behavior when g(m, 0) =
√
em2E1(m2).

However, we were not able to find success in this direction.
To build more intuition for R(m, z), its close relation to the Dawson F function is evinced

by considering the Maclaurin series in z for both:

F (z) = z − 2

3
z3 +

4

15
z5 − 8

105
z7 + · · · , (4.37)

R(m, z) = em
2

(
E1(m

2)z − 2

3
E2(m

2)z3 +
4

15
E3(m

2)z5 − 8

105
E4(m

2)z7 + · · ·
)

(4.38)

which further highlights the utility of maintaining consistency of R(m, z) with its asymptotic
sister F (z). The series are the same, but with the addition of exponential integral multiplying
factors in R(m, z).

In order to find such a numerical relation which maintains this consistency in the asymp-
totic case, Eq. 4.32 can be transformed via interchange of differentiation and integration.
Consider the generalized function:

R(m, z, α) = em
2

∫ ∞

0

e−α(t2+m2) sin(2zt) dt

t2 +m2
(4.39)

Differentiating reveals that:

∂R(m, z, α)

∂α
= −em2

∫ ∞

0

e−α(t2+m2) sin(2zt) dt = −e
−m2(α−1)

√
α

F

(
z√
α

)
(4.40)

The fundamental theorem of calculus then applies:

R(m, z,∞)−R(m, z, 1) = em
2

∫ ∞

1

1√
α
e−m2αF

(
z√
α

)
dα (4.41)

Using the fact that R(m, z,∞) = 0 and doing a change of variables, Eq. 4.32 becomes:

R(m, z) = 2em
2

∫ ∞

1

e−m2t2F (z/t) dt (4.42)

which confirms our hunch about the close relation of F (z) to R(m, z); it is an infinite
superposition of stretched and scaled Dawson F functions.

This formulation yields useful numerical results by applying Gauss-Laguerre quadrature
to Eq. 4.41, amounting to approximation by a sum of Dawson F function. However, this
approach fails for small values of m. Instead, we have found success in inserting an ap-
proximation for F (z) to Eq. 4.42. Well-known approximations to F (z) based on rational
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expressions and other elementary functions [151], [152] do not result in numerically useful
expressions. However, noting that:∫ ∞

1

e−m2t2(z/t)(2k+1) dt =
1

2
z1+2kE1+k(m

2) (4.43)

it can be seen that approximations to F (z) in the form a power series can be computationally
efficient in light of the recursion relation for exponential integrals:

nem
2

En+1(m
2) = (1−m2em

2

En(m
2)) (4.44)

Careful attention must be paid to the floating point properties of this relation [153]. The
magnification of computational errors grows arbitrarily large, and we later present a special-
ized numerical algorithm guaranteeing floating point stability.

In order to thus obtain a simple, efficient approximation to R(m, z), we employ the
Chebyshev expansion valid for z ∈ [−5, 5] presented in [154]. The results of our method
could be improved by using a finer piecewise division for the Chebyshev expansion of F (z)
as in [155], but we have used the present approach for simplicity of implementation. Thus,
if F (z)’s truncated Chebyshev expansion is converted to the power series basis:

F (z) ≈
n∑

i=0

cn(z/5)
2∗i+1 (4.45)

we obtain approximations of the form

R(m, z) ≈
n∑

i=0

cn
2
E1+i(m

2)(z/5)2∗i+1 . (4.46)

For values |z| > 5, the integration can be split into two ranges. In the first t ∈ [1, z/5],
the asymptotic formula for F (z) is employed:

F (z) ≈ 1

2z
− 1

4z3
+

3

8z5
+ · · · . (4.47)

For the remaining range of integration t ∈ [z/5,∞), the truncated Chebyshev expansion in
a power series basis is again employed. However, we have found the simplicity and accuracy
of Eq. 4.22 to be appropriate for resonance upscatter applications.
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4.2.2 Numerical Implementation

Stable, Efficient Calculation of an En Sequence

The magnification of error in the forward recurrence relation for exponential integrals from
[153] is:

|ρn| =
xnE1(x)

n!En+1(x)
(4.48)

Notably, the error magnification of the reverse recurrence relation is the reciprocal of this
quantity. Moreover, |ρn| is a function increasing from 1, reaching a maximum, and mono-
tonically descending below 1 [153]. As a consequence, a critical index n∗ exists such that
iterating outward from it results in a numerically stable recursion algorithm. In terms of
evaluating Eq. 4.46, this means splitting the polynomial in z into parts above the index
n∗ and those below. After computing em2

En∗(m2), Horner’s method is used in the reverse
recurring relation down to the term of order z, and forward recursion is employed to evaluate
the polynomial of degree leading from 2n∗ + 1 up to 2n+ 1.

A simple result we have obtained is that the smallest value of n∗ such that:

xn
∗
E1(x)

n∗!En∗+1(x)
< 1 (4.49)

is well approximated by:

n∗ ≈ ex− 1

2
log π . (4.50)

Appendix D shows how this can be obtained. Fig. 4.5 illustrates the accuracy of Eq. 4.50.
Using this information, algorithm 10 explicitly states the procedure to calculate R(m, z) and
its derivative with respect to z. While the use of a power basis polynomial is sub-optimal,
numerically speaking, the main source of numerical error in this scenario originates from
the recursive exponential integral formula. The specification of the algorithm assumes that
an accurate method for computing En(x)e

x has been provided, which is well documented in
many other works. We have employed a C++ adaptation of the continued fraction approx-
imation employed by the Cephes library [156], which is documented in [98].

The Jump Integral

After computing the value of I(ℜ[z],m), the differential equation of Eq. 4.27 which I follows
can be used to calculate I(z,m). We calculate I(z,m) in this manner due to the nearly dis-
continuous behavior of I(z,m); it has a jump discontinuity about m = 0 if z ∈ R. Because
the imaginary part of z is small in windowed multipole libraries, the resulting behavior is
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Figure 4.5: Approximate solution to finding the first value of n such that xnE1(x)
n!En+1(x)

< 1.

nearly discontinuous and hence is not captured efficiently by general approximation tech-
niques; finely resolved tables or high polynomial orders would be required. Our approach
thus resolves the discontinuous component exactly with the piecewise function Eq. 4.30.
The nontrivial part of Eq. 4.28 is the transcendental integral:

J(z, x) = e−ℜ[z]2
∫ z

ℜ[z]

et
2
dt

x− t (4.51)

We have deemed this term the jump integral because it allows jumping from values of I(z,m)

on the real line to values above the real line in the complex plane. While it seems that our
issue of approximating the transcendental integral w(z, x) has seemingly not been heretofore
ameliorated due to the appearance of yet another transcendental integral Eq. 4.51, a change
of variables puts it into a form suitable for numerical approximation:

J(z, x) =

∫ iℑ[z]

0

eu
2+2uℜ[z] du

m− u (4.52)

where again, m = ℜ[z] − x. Because ℑ[z] is small as shown by Fig. 4.4, the argument to
the exponential term is similarly small. Where this integral is well-defined (m ̸= 0), the
exponential term can be expanded in its Maclaurin series and integrated term by term:

eu
2+2uℜ[z] =

∞∑
n=0

an
n!
un . (4.53)
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It is verified that the coefficients an satisfy the two-term recurrence:

an+1 = 2ℜ[z]an + 2(n− 1)an−1; a0 = 1; a1 = 2ℜ[z] (4.54)

Next, the term-by-term integrals appear in the form:∫ iℑ[z]

0

un du

m− u = mnBiℑ[z]/m(1 + n, 0) (4.55)

Where Bx(·, ·) is the incomplete beta function, defined as:

Bx(a, b) =

∫ z

0

ta−1(1− t)b−1 dt . (4.56)

A recursion formula derived as a special case of formulas in [98] efficiently calculates these
incomplete beta function values of higher n in sequence:

Bx(n+ 1, 0) = Bx(n, 0)−
xn

n
(4.57)

In combination with the fact that:

Bx(1, 0) = − log(1− x) , (4.58)

this yields an efficient numerical scheme for evaluating an integral of the truncated Maclaurin
series of the exponential of Eq. 4.52. Algorithm 11 details the combination of all of these
facts for an efficient approximation to J(m, z). This approximation works very well for
problems with |ℜ[z]| ≤ 5, which easily covers the range of scattering events where resonances
appreciably affect the double differential at temperature. Outside of that range, the integral
becomes increasingly oscillatory, so an asymptotic approximation is employed for |z| > 5.
This approximation is documented in Appendix F.

Lastly, Algorithm 12 gives the overall algorithm to compute w(z, x) efficiently. It relies
on access to some implementation of calculating w(z), e.g. the permissively licensed [121]
which implements a variety of approximations to achieve high accuracy, or one of the various
rational approximations [146], [157], [158] when higher error is permitted. Regardless of
the chosen w(z) implementation, our algorithm maintains asymptotic consistency such that
limx→∞w(z, x) = w(z). This work leverages a recent approximation tailored for WMP [123].
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Input : m ∈ R, z ∈ R
Output: R(m, z) from Eq. 4.32 and ∂R

∂z

Data: cn coefficients of Eq. 4.45, 1 ≤ n ≤ nmax

n∗ ← min(max(em2 − 0.57, 1), nmax);
expnexp ← En∗(m2)em

2 ;
expnexp_orig ← expnexp;
result ← 0;
derivative ← 0;
// Backward recurse with Horner scheme
for n← n∗ − 1 to 1 do

expnexp ← (1− n · expnexp) /m2;
derivative ← derivative · pow(z/5, 2)+ result;
result ← (result)pow(z/5, 2) + expnexp · cn−1 ;

end
derivative ← 2derivative · pow(z/5, 2) ;
derivative ← derivative + result ;
result ← result · z/5 ;
// Forward recursing polynomial evaluation
x2 ← pow(z/5, 2n∗ − 1);
x1 ← pow(z/5, 2(n∗ − 1));
expnexp ← expnexp_orig;
for n← n∗ to nmax do

result ← cn−1·expnexp · x2;
derivative ← cn−1·expnexp · x1 ·(2n− 1);
x2 ← x2 · pow(z/5, 2);
x1 ← x1 · pow(z/5, 2);
expnexp ← (1−m2 · expnexp)/n;

end
return (result, derivative);

Algorithm 10: Stable R(m, z) approximation for |z| ≤ 5. Appendix E is used for |z| > 5.
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Input : x ∈ R, z ∈ C
Output: J(m, z) from Eq. 4.51
result ← 0;
a0 ← 1.0;
a1 ← 2ℜ[z];
result ← b1 · a0;
b1 ← b1− iℑ[z]/(x−ℜ[x]);
// nmax adjusts the number of truncated series terms
for n← 2 to nmax do

tmp ← 2ℜ[z] · a1 + 2(n− 1) · a0;
a0 ← a1;
a1 ← tmp;
result ← result + b1 · a1mn

n!
;

b1 ← b1− 1
n+1

(
iℑ[z]

(x−ℜ[x])

)n
;

end
return result;

Algorithm 11: Efficient J(m, z) Approximation for ℑ[z] < 1 and |ℜ[z]| < 5. Appendix
F describes the approximation for |ℜ[z]| > 5.

Input : z ∈ C, x ∈ R
Output: w(z, x) from Eq. 4.14
m ← x−ℜ[z];
// R(m, z) integral and its derivative
rmz, drmzdz ← call(Alg. 10);
// I(m, z) integral
imz ← m · rmz + 1

2
drmzdz + iπ

2
e−ℜ[z]2+x2 (erf(x)− sign(m)

)
;

// J(m, z) integral
ji ← call(Alg. 11);
imz ← imz+ ji;
imz ← imz·eℜ[z]2−z2 ;
result ← i

π
e−x2 · imz;

result ← result + 1
2

(
erf(x) + 1

)
w(z);

return result;
Algorithm 12: Efficient w(z, x) approximation for ℑ[z] << 1.
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4.2.3 The Pole Sampling Approximation

A key approximation of our technique that enables its computational efficiency is viewing
the multipole cross section in the relative speed distribution as a mixture distribution. The
theoretical justification is that if poles are present and sufficiently close to the incident neu-
tron energy (|z| < 20 specifically), the relative speed PDF is well-approximated by ignoring
the polynomial contribution:

P (x|y) ≈ e−x2ℜ

 ∑
j∈W (β−2y2)

βrj
zj − x

 (4.59)

This expression is not employed to actually sample the scattering distribution. Rather,
it is best viewed as a mixture distribution in which each pole contributes a probability
proportional to:

P[σs(x) =
βrj
z − x + σ0,j + σ1,jx] ∝ ℜ

[
rjw(zj)

]
(4.60)

which defines a discrete distribution. In order to avoid the need for auxiliary storage and
the calculation of a normalizing constant to this distribution, we recommend finding the
maximum of −|rjw(zj)|/ log(ξj) where ξj are uniform random numbers differing for each
pole. The j corresponding to the maximum of this expression follows the desired discrete
distribution. We also note that the quantity ℜ

[
rjw(zj)

]
is exactly the Doppler broadened

contribution to the integrated scattering cross section, so this sampling procedure incurs no
additional Faddeeva function evaluation overhead if this is done in tandem with a WMP
cross section lookup operation.

Finally, we emphasize that the pole sampling approximation is not precisely consistent
with the original multipole cross section representation. Instead, it uses the fact that poly-
nomial contributions to the cross section negligibly affect the scattering kernel, while poles
do so substantially. As a concluding remark, it must be emphasized here that the approxi-
mations made behind pole sampling are at the moment not mathematically rigorous. This
stems from the neglect of the polynomial part of the cross section. Unfortunately, an ex-
act treatment of the mixture distribution defined by the poles would require the piecewise
integration of multiple energy windows, which would be computationally expensive. In par-
ticular, considering how the polynomial part of the cross section is given as a linearization
in the selected resonance trough, the consistency of the cross section for various poles in our
method is difficult to interpret. In the future, further theoretical work could likely justify
the choices made here.
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4.2.4 Finding the values of σ0 and σ1

While it may seem that the polynomial contribution to Eq. 4.6 could come as the first terms
from the polynomials defined within the windows, as [142] used, we have found in practice
that this choice is inconsistent with the approximation of the pole sampling technique and
leads to negative cross section values.

To remedy this issue, we use the heuristic that the relative error of the cross section’s
local approximation is minimized by matching polynomial values in the vicinity of the dip
of the resonance. The location of the scattering resonance trough is calculated as:

√
Etrough =

−b+
√
b2 − abc+ a2d

a
(4.61)

where

a = −ℑ[
(
r∗j − r̄∗j

)
] (4.62)

b = −ℑ[
(
r̄∗jp

∗
j − r∗j p̄∗j

)
] (4.63)

c = −ℜ[
(
p̄∗j + p∗j

)
] (4.64)

d = |p∗j |2 (4.65)

(4.66)

At this point, the window index of
√
Etrough is calculated 1 . This may be a different

window from the incident neutron energy’s window. The windowed multipole cross section
of Eq. 4.5 is then evaluated at

√
Etrough but excluding the sampled pole pj, i.e.

σ0 =
1

Etrough
ℜ

 ∑
j∗ ̸=j∈W (Etrough)

rj

pj −
√
Etrough

+
N∑

n=0

anE
n/2
trough (4.67)

From there, σ1 ≈ ∂σs(E)

∂
√
E

is calculated at the same point, this time only including contributions
from the polynomial expansion but not from any poles. This linearization technique has been
found to improve the accuracy of our method when considering nuclides with tightly spaced

1The term under the square root in Eq. 4.61 can sometimes be negative in the vicinity of nonphysical poles
which are artifacts of the fitting process, and dealing with imaginary quantities in this case is undesirable.
Therefore, our calculation uses a linearization of the non-pole cross section at the incident energy instead in
that case.
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resonances such as 235U. For complete clarity, the resulting expression is:

σ1 =
N∑

n=0

an
n− 2

2
E

n/2−2
trough (4.68)

Finally, a linearization of the cross section in
√
E space has been obtained. For use

with the root finder, the nondimensional variable β(
√
E −√Eincident) is preferable, so σ0 is

appropriately shifted and σ1 appropriately scaled.

4.2.5 Inverting the relative speed CDF

To sample from the relative speed PDF, we employ the CDF inversion technique. A naive
attempt at this would be a few bisection root finding steps followed by a handful of Newton-
like iterations. In practice, we’ve found that five bisection iterations followed by three Halley-
Newton iterations resolves the root to within acceptable tolerance; however, a far more
efficient root finder has been developed which takes a maximum of four iterations total, only
requiring more work for unusual edge cases.

Inverting the CDF within a number of steps which is random but with limited upper
bound is essential to obtaining acceptable performance on GPU, which is partly the goal of
this method. A root finding technique which takes many iterations 1% of the time would be
just as lackluster on GPU as rejection sampling. Hence, the bootstrapping step, as we call it,
is essential to an efficient implementation of MARS. The bootstrapping step cheaply obtains
an initial guess to the solution of the CDF inversion problem, from which a small number of
Newton-like iterations improve the solution.

The key to doing so lies in finding a cheap approximation to the inverse of the CDF with
general pole parameters. In order to do so, we first move from the root finding space of
x ∈ (−∞,∞) to the nonlinearly mapped variable x̃ = 1

2
(1 + erfx). The intuition behind

using this modified space is that as the resonances become weak and the incident neutron
energy becomes high, it can be shown that the CDF is simply equal to x̃ which ranges between
zero and one. Resonances and low energy free gas effects simply act as perturbations to this
linear function, which enables a good starting point for approximating the root location.

The next step in improving the CDF model in the mapped space is to observe that
the contribution of collision probability from the resonance largely does not depend on its
imaginary part. Increasing the imaginary part of the resonance broadens it and decreases
its width. Therefore, the magnitude of the jump in w(z, x) when x is near ℜ[z] quantifies
the probability that the neutron experiences a collision near the peak of the resonance. The
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jump in w(z, x) for small ℑ[z] about ℜ[z] is approximately e−ℜ[z]2 ,

lim
ϵ→0

i

π

∫ ℜ[z]+ϵ

ℜ[z]−ϵ

e−t2 dt

ℜ[z] + iϵ− t =
1

2
e−ℜ[z]2 , (4.69)

and therefore the probability contribution due to the resonance is approximately:

pjump = ¶[x ≈ ℜ[z]] ≈ βrj∗πe
−ℜ[z]2/C (4.70)

where C is the normalizing constant given by Eq. 4.13. Because this is an approximation,
the probability of Eq. 4.70 may not be bounded between zero and one, so we threshold it
to that range. In practice, the estimate provided here is accurate. We have found that this
probability tends to be added into the CDF about ℜ[z] over the interval [ℜ[z]− 3

2
ℑ[z],ℜ[z]+

3
2
ℑ[z]]. This estimate could obviously be tuned for greater accuracy.

One final tool we employ to bootstrap the root finding process pertains to the values
of the CDF about x = 0. In this case, numerous instances of functions occuring in its
expression such as erf(x) and e−x2 take on easily calculated values. On top of that, the
incomplete Faddeeva function has a closed form expression when x = 0:

w(z, 0) =
1

2
w(z) +

i

2π
e−z2E1(−z2) . (4.71)

Because e−z2 is already computed and cached for the CDF inversion, the calculation of a
complex exponential integral is the only difficulty. This is much easier and computationally
cheaper to do than the more involved w(z, x) evaluation, so any off-the-shelf approximation
of E1(−z2) can be employed here.

Addtionally, the derivatives of the CDF with respect to x about x = 0 are also easily
obtainable, which we use to further improve our rootfinding guess. So far, we have only
incorporated information from the first derivative which has proven sufficient.

This leaves us with the following pieces of information from which the root estimate is
extracted: the probability due to the resonance, its width, the value and slope of the CDF
about x = 0 i.e. x̃ = 1/2, and the known endpoint values of the CDF at 0 and 1. We
therefore construct a function which is piecewise quadratic on the left and right of x̃ = 1/2.
This quadratic interval ranges to either the endpoints x̃ = 0 or x̃ = 1, or the resonance’s
upper or lower range of probability gain, estimated here as x∈ [ℜ[z] − 3

2
ℑ[z],ℜ[z] + 3

2
ℑ[z]].

Note that this interval has to be mapped to an interval in x̃ space. Because the interval of
the resonance is small, the Jacobian of the transformation x 7→ x̃ which is proportional to
e−ℜ[z]2 (a quantity already computed) can be used to calculate the range in x̃ space.
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(a) T = 300 kelvin (b) T = 900 kelvin

Figure 4.6: The bootstrapping CDF provides a fairly accurate, easily invertible approxima-
tion to the true relative speed CDF to kickstart the root finding process. The pairs of lines,
moving from top to bottom, represent 35.25, 36.25, 38.25, and 66.25 eV incident neutron
energies.

With this knowledge, the CDF can be approximated somewhat accurately in x̃ space.
Despite the apparent complexity of what was just described, the inversion of the previous
paragraph’s function can be done using simple branching logic and, at worst, the solution
of a quadratic equation. Because translating the inverse of the above function into code can
take nontrivial effort, C++ code to achieve this has been provisioned in Appendix G. Figure
4.6 shows two examples of how this can be a quite satisfactory approximation of the CDF
in x̃ space when resonances are influencing the scattering distribution.

After approximating the root we wish to find by the above procedure, we correct it
with two Newton-Halley iterations. The Halley factor is damped according to the formula
provided in Numerical Recipes [159].

4.3 Results

4.3.1 Calculation of w(z, x)

In order to test the accuracy of Alg. 12, we haved computed reference values of w(z, x)
using scipy’s [160] adaptive quadrature routine, scipy.integrate.quad, to evaluate the
integral formulation Eq. 4.14. In approximation of the jump integral Eq. 4.51, only the
first five terms in the series are retained. Where functions such as log(x) or ex appear, C++
standard library implementations have been employed. The implementation of w(z) from
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Figure 4.7: Error of ℜ[w(z, x)] for a few values of z. The legend is the imaginary number
added to the real part specified in each figure’s caption. The plotted error, wapprox(z, x) −
w(z, x) is normalized by ℜ[w(z)] to match the scaling of Fig. 4.2. Where the scipy numerical
integration routine returned NaNs, the lines disappear.

[121] has been employed. This results in the error profiles exhibited by Fig. 4.7, where we
have plotted the real part of

(
wapprox(z, x)− w(z, x)

)
/w(z). Because only the real part is of

interest in resonance upscatter calculations, results on the imaginary component’s error are
omitted.

4.3.2 Single Energy Testing

We first present in Fig. 4.8 the relative speed distribution of 238U for two different energies
and a few temperatures as calculated both by numerical integration and the MARS analytic
CDF. The energies correspond to being in the trough and near the peak of a scattering
resonance. These plots clearly show the influence of the resonances on the double differential
cross section; a nuclide with constant cross section has a relative speed distribution which
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Figure 4.8: The MARS analytic CDF matches numerically integrated relative speed cumu-
lative distributions. Some error can be observed for the 1500K case at 35.25 eV; scattering
in the resonance dip is fortunately an extremely rare event.

is very nearly an error function at epithermal energies. The relative speed distribution near
resonances has a jumping effect which is governed by w(z, x). They bear a resemblance to
w(z, x) behavior depicted by Fig. 4.2.

If the relative speed distribution is correct, the resultant double-differential scattering
distribution is also correct. Fig. 4.9 shows this is the case for our method when compared to
the RVS method of [99]. These results were obtained from our modified version of OpenMC,
available at github.com/gridley/openmc/tree/mars. It also shows that the pole sampling
technique successfully works for 235U and its tightly spaced resonances.

4.3.3 Pin Cell Reactivity Feedback

The 2.4% enriched PWR pin cell example from OpenMC’s suite of example problems was
used to calculate Doppler reactivity feedback effects with four different models. The first
and second used pointwise cross sections that were interpolated between 300, 600, 900,
1200, and 2500 kelvin. The model was run at temperatures ranging from 300 to 1800
kelvin in increments of 20 kelvin. Of the two using pointwise cross sections, one used the
historical constant cross section free gas scattering approximation, and the second used the
RVS method. The second two cases both used windowed multipole cross sections, one using
RVS and the second MARS. The ENDFB-VII.1 nuclear dataset was employed. Figure 4.10
shows how these cases compare. Two hundred cycles with ten inactive were employed, using
200,000 particles per cycle. keff was thus converged to 20 pcm for each case.

It can be seen that the pointwise cross section representation incurs some interpolation

150



(a) 235U (b) 238U

Figure 4.9: Scattering at 1200K matches results from RVS method well at two different
energies. These energies interact with resonances for both nuclides.

Figure 4.10: MARS matches the k eigenvalue of the RVS method on a 2.4% enriched fresh
PWR pin cell problem. Line width represents estimated standard deviation of the mean.
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Method Inactive Active
CXS 60.5 11.4

DBRC 57.0 11.1
RVS 58.3 11.3

MARS 60.3 11.1

Table 4.1: Tracking rate in thousand particles per second obtained by the constant cross
section treatment, and three resonance upscatter models. MARS is comparable in speed to
widely accepted techniques.

error between 1200 and 1800 kelvin. The MARS method matches the RVS results where
multipole cross sections were employed. We can thus conclude that the new method works
correctly across the range of energies where resonances influence the double-differential cross
section at temperature for nuclides of both strong, distantly spaced resonances (238U) and
closely spaced weak resonances (235U).

4.3.4 Influence on Tracking Rate

Finally, in order to determine the computational efficiency of the new method, tracking rate
comparisons were carried out on the same PWR pin cell example problem. The computa-
tional performance of both inactive and active cycles was assessed. For the active cycles, a
100x100 Cartesian mesh tallied flux, fission rates, and neutron production rates using track-
length estimators. In addition, a spatially homogenized energy spectrum tally consisting of
500 equal lethargy bins was applied.

An Intel Xeon W-2133 with six physical cores carried out the calculations, and obtained
the results depicted in Table 4.1. This clearly demonstrates the computational efficiency of
MARS along with the RVS and DBRC methods–it is on par with the finest contenders for
modeling this type of problem.

The computational expense incurred by tallying tends to render the performance impact
of our new method particularly negligible. Collision estimators could be used on the mesh
tally to improve the tracking rate, but we arbitrarily opted for track length estimators. Due
to subtle hardware-related effects such as cache utilization or branch prediction, the tracking
rates of the three resonance upscatter handling methods have different relative performances
when comparing active and inactive cycles. Future work will explore detailed performance
results on a variety of architectures.
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4.4 GPU Performance

We implemented the MARS method on a branch of our GPU version of OpenMC described
in Chapter 3. The code can be found at https://github.com/gridley/openmc/tree/cuda_
mars. From an implementation point of view, we found conversion of the CPU code to re-
quire hardly any effort. std::complex numbers had to be replaced with thrust::complex

numbers for GPU compatibility, and some functions like std::exp had to be changed to
thrust::exp to compile for the GPU. Similarly some xt::xtensor objects had to be con-
verted to our GPU-compatible implementation, openmc::tensor. This shows the benefit of
our approach compared to that carried out at Argonne, where all tensors, vectors, and more
were converted to raw pointers.

To illustrate the performance of hte new method on GPUs, we first examine the GPU
performance of a WMP-based calculation using the (incorrect) constant cross-section approx-
imation, the RVS method, and the DBRC method. For this run, we used results obtained on
the 293 kelvin Hoogenboom-Martin large benchmark from [116]. Figure 4.11 shows those re-
sults. We can see that as predicted in Chapter 2, the DBRC method is practically unusable,
and processed around 500 particles per second. This plot also identifies that the resonance
upscatter sampling when using RVS takes a negligible amount of time compared to the rest
of the collision processing kernel.

To gauge the greatest possible advantage of our newly proposed method over the state-of-
the-art RVS method, we consider the same computational benchmark but using 1050K fuel
rather than 293K fuel. This represents the case with a relatively higher rejection in the RVS
loop, since the performance of RVS was shown to degrade slightly at higher temperatures
in [99]. Figure ?? shows this result. As for the CPU-based results in Table 4.1, we can see
that the choice of resonance upscatter numerical algorithm makes no practical difference as
long as rare cases with extremely high rejection rates are not encountered, as DBRC does.
The MARS algorithm outperforms slightly compared to RVS, but because the importance
of resonance upscattering modeling is low in the first place, the performance gain is limited.

4.5 Discussion

The multipole formalism carries a variety of advantages compared to pointwise cross sections.
Aside from its potential gains in computational efficiency on modern compute architectures,
it enables accurate Doppler broadening without a library size tradeoff [71], elegant sensi-
tivity quantification, and narrows the gap between R matrix theory and the cross section
representation [144]. This work develops yet another advantage to the windowed multipole
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Figure 4.11: The speed of the standard resonance upscatter methods on GPU: neglecting
it with CXS (constant cross-section), RVS (relative velocity sampling), or DBRC (Doppler
broadening rejection correction).

Figure 4.12: The MARS method’s performance on the HM large benchmark with 1050K fuel
relative to RVS.
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formalism: closed-form resonance upscatter treatment.
We have demonstrated that the new method matches the results obtained by other reso-

nance upscatter techniques. To achieve this, we derived an expression for the target relative
speed distribution, and identified a novel special function which universally arises in this
application. Novel numerical techniques that balance efficiency and accuracy were derived,
implemented, and tested. The overall scheme was shown to achieve the same tracking rate
as other resonance upscatter modeling methods.

In Figure 4.12, it was shown that the new method outperforms the RVS method for
moderate particle counts by a few percent, but RVS and MARS become nearly indistin-
guishhable in performance when the device becomes saturated with work. This originates
from increasingly coalesced memory accesses in the RVS method; our collision processing
kernel lexicographically sorts by collision nuclide index in an outer loop and energy index in
an inner loop. The only potentially diverged memory accesses in RVS within a rejection loop
eventually become fully coalesced. Moreover, the expected waiting time for the last thread
in a thread block to complete the sampling process is not terribly high.

We can apply Eq. 2.13 from Chapter 2 to approximately analyze the penalty due to
waiting on many threads to complete a rejection loop. Unfortunately, our developments in
Chapter 2 did not consider the case of a variable rejection rate across threads. However, the
worst case rejection rate likely presents a representative result. We can take the worst-case
representative single-thread expected number of samples to be around 50,000 and 1,000 for
DBRC and RVS respectively, judging from results in [99]. Generally, RVS has a higher av-
erage number of iterations but much smaller maximum number of iterations. We used 128
threads per block in this case, Eq. 2.13 implies that RVS will on average take 5,500 loop
iterations to complete, but DBRC will take around 280,000. If this increased number of iter-
ations ends up producing uncoalesced memory accesses, the performance will be more than
three to four magnitudes lower. Indeed, this conclusion matches the single point reporting
DBRC performance in Fig. ??. We see the delicate tightrope that must be walked when
rejection sampling on the GPU: a moderately high rejection rate will degrade performance
some, but very high peak rejection rates along with potentially diverged memory access will
fully bottleneck the simulation and crash performance.

Figure 4.12 showed that the overall tracking rate of the MARS method compared to RVS
confers no significant advantage on a work-saturated GPU. Despite this, there are a variety
of reasons to use over other methods. For one, we can compare to the RST method [133],
which was shown to also not induce a slowdown on GPU compared to constant cross-section
sampling. This method requires an enormous amount of memory; a univariate relative speed
distribution must be tabulated at every point of the pointwise grid in the relevant energy
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range, leading the authors to neglect this resonant scattering in all nuclides but 238U. Even
so, the method took around 1 GB of extra storage, and requires a temperature interpolation
process which has been validated to a limited extent.

Similarly, the RVS method requires the storage of the pointwise zero kelvin scattering
cross-sections’s cumulative integral in energy space. This requires a tabulation of energy
points at zero kelvin, which requires more points than other temperatures due to the un-
broadened resonance shape. This amounts to about 150 MB in ENDF/B-VIII.0. Far more
importantly, we envision a future for the windowed multipole method in which pointwise
cross-sections have been fully dealt away with. This would straightforwardly allow integrated
uncertainty quantification purely via windowed multipole parameters, which are likely more
closely linked to actual uncertainty parameters on resonances.

One reason that the MARS method did not exhibit a substantial performance gain rel-
ative to RVS originates from problems outside the domain of resonance upscatter sampling.
Indeed, this may become a computationally important part of the cross-section lookup ker-
nel. Currently, our CUDA code exhibits far from optimal performance in the collision kernel.
As pointed out in Chapter 3, the collision formalisms entail substantial branching logic and
nested data structures. This leads to an already dire degree of memory and logical diver-
gence, drowning out the influence of the relatively benign resonant scattering sampling step
in all but the most poorly behaved algorithms like DBRC. In fact, this highly sub-optimal
collision kernel may explain why our code takes more particles to saturate the device rela-
tive to Argonne’s code as shown by Fig. 3.31. Because our code sorts the collision kernel
lexicographically first by nuclide then energy, the expense of these highly diverged memory
acccesses likely becomes amortized with a tremendous number of particles in flight.

The new method called multipole analytic resonance scattering (MARS) overcomes the
storage requirements of relative speed tabulation [29], and avoids rejection sampling as em-
ployed by other common approaches. Without a need to access intermediate storage, the
accesses to global memory can be reduced on GPU architectures. On top of that, the work
discrepancy between threads incurred by rejection sampling on GPUs is similarly overcome.
The RVS method indeed exhibits these deficiencies which might superficially judged to be
consequential to GPU performance; however, the fairly un-optimized collision kernels em-
ployed in both the Argonne and MIT GPU MC codes clearly are not bottle-necked by
resonant scattering modeling. Only in the future when all the other types of collision have
been optimized thoroughly–for example sampling the center-of-mass angular distributions–
can these methods be compared in a manner that illustrates a non-negligible benefit of one
over the other.
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Chapter 5

Beyond Probability Tables for the
Unresolved Resonance Region

5.1 Introduction

5.1.1 The Unresolved Resonance Region

We review the requirements of Monte Carlo neutron transport codes to accurately model
the phenomena associated with the unresolved resonance regime, present the first rigorous
justification for the modeling approach employed by probability tables for unresolved reso-
nances, and present novel theoretical insight to the nature of the unresolved resonance cross
section distribution. Using the new insights, we present a new method named AURA (ana-
lytic unresolved resonance algorithm) for modeling unresolved resonance cross sections with
the normal inverse Gaussian distribution. We show that the new model accurately models
temperature dependence in the URR region, requires less data than previous methods, and
outperforms the conventional URR treatment on GPUs.

To verify the performance impact of probability tables, first published in [54], we ran the
Hoogenboom-Martin large benchmark from Chapter 3 both with and without probability
tables present. Figure 5.1 shows the results, which matches the previously observed extent
of performance degradation from URR modeling. Our goal in this chapter is to devise a
new method for modeling URR effects that exhibits negligible performance penalty, or as we
show later, a performance increase is even possible.

The behavior of neutron cross sections in the energy range relevant to reactor physics is
typically divided into a few distinct regimes: thermal, resolved resonance region (RRR), un-
resolved resonance region (URR), and fast. The dominant influence of molecular binding and
thermal motion characterizes the thermal region, less than a few eV when considering room
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Figure 5.1: Probability tables incur a serious processing rate penalty on the H100 on the
Hoogenboom-Martin benchmark.

temperature problems. Next, in the resolved resonance region, experiments have sufficient
energy resolution to map individual resonances. After that comes the unresolved resonance
region, where distinct resonances in the neutron cross section exist, but are impractical to
measure as a consequence of their small width or spacing relative to experimental resolution.
Due to differences in the resonant structure of different nuclides, the unresolved region can
begin at low or high energies. For example, 238U’s unresolved region begins at 20 keV, but
239Pu’s URR begins at 2.5 keV in ENDF/B-VIII.0 [161]. After the URR region is the fast re-
gion, typically considered as ranging from 0.5 MeV upward. There is no physical distinction
between the URR region and the fast region; only a modeling distinction that variability
due to unresolved resonances is not taken into account. This work focuses specifically on
improving the modeling of cross section variability in the URR.

In the URR, evaluated nuclear data present statistics on the resonances in the URR
regime, from which “probability tables” (PT) [162] of the neutron cross section can be cre-
ated for use in Monte Carlo codes, or dilution tables [163] for use in deterministic codes.
Specifically, NJOY’s [164] respective PURR and UNRESR modules carry out these tasks.
More generally, deterministic codes employing the subgroup approach may also employ PT,
as described by [165] and implemented in their CALENDF code. Using PT enhances the
accuracy of continuous energy Monte Carlo calculations to eliminate biases typically around
100-200 pcm in fast spectrum problems that occur when neglecting oscillation of the cross
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section in the URR range, as shown in [166], [167] among many other works.
Codes used to generate PT often employ the approach of PURR. The ENDF file provides

statistical information about the nature of the resonances in the unresolved resonance region
at a variety of energy points. This enables calculation of the distribution of the cross section
in a small energetic vicinity about these points. The approximation made in doing so is that
the resonant structure happens over very fine energy scales compared to the spacing between
points. In ENDF/B-VIII.0, three nuclides are exceptional and use a single set of resonance
parameters for all energies in the unresolved region : 58Fe, 140Ba, and 167Er.

The resonance statistics presented are the mean spacing between resonances, mean res-
onance widths for use in single level Breit-Wigner (SLBW) resonance formulas, the number
of χ2 degrees of freedom used to model each partial resonance width, and information about
various spin states. The various possible spin configurations of the neutron incident on the
target lead to statistically independent sets of resonances which are summed together to
represent the total cross section. Two quantum numbers are required to represent each spin
configuration: L, the orbital angular momentum of the incident particle relative to the nu-
cleus, and J , the total angular momentum of the compound state, equivalently the total
angular momentum of the initial constellation.

The states corresponding to L = 0 are the s-wave resonances, L = 1 are p-wave reso-
nances, and so on under standard spectroscopic notation. In ENDF/B-VIII.0, the file for
235U has for L = 0, J ∈ {3, 4}, or for L = 1, J ∈ {2, 3, 4, 5}. The d-wave and higher
resonances are negligible. For 238U, parameters for L = 0 with J ∈ {0.5}, L = 1 with
J ∈ {0.5, 1.5}, and L = 2 with J ∈ {1.5, 2.5} are all listed. 58Fe is the lone nuclide for which
f-wave resonances are listed.

The mean reduced scattering width, ⟨Γn,0⟩ is given, along with the mean capture width
⟨Γγ⟩ and mean fission width ⟨Γf⟩ are given. The ENDF file also may include an arbitrary
additional channel width, ⟨Γx⟩ called the competitive component. It should be noted that
the channel may occur only after a certain energy threshold, so the cross section might
change abruptly past the threshold for the competitive channel.

Of course, only knowing the average resonance widths does not allow their sampling.
From Porter and Thomas’s work [168], physical reasoning implies that these widths follow
χ2
a distributions with the number of degrees of freedom, a, corresponding to the number of

ways the compound nucleus can decay. Fission is a multi-channel process, so two or three
degrees of freedom are commonly encountered there. In heavy nuclei, the capture reaction
often has over 50 channels available [169]. Noting that Var(Q/a) → 0 with Q ∼ χ2

a as
a→∞, ENDF’s choice of a single constant value of the capture width is well-justified. For
scattering, again only one or two degrees or freedom are typically encountered.
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To restate the summed cross section across all spin states and resonances under the
SLBW formalism, we have that the elastic scattering cross section is:

σn(E) = σpot+

Nl−1∑
l=0

Nj(l)∑
j=1

Nλ∑
λ=1

σλ

ψ(θλ, xλ(E))[cos(2ϕl)−
(
1− Γn,λ

Γλ

)]
+ χ(θλ, xλ(E)) sin(2ϕl)

 ,

(5.1)
where σλ, the approximate maximum value of the cross section, is:

σλ =
4πgJΓλ,n

k2Γλ

. (5.2)

The cross section for fission, absorption, or any competitive reaction is:

σγ(E) =

Nl−1∑
l=0

Nj(l)∑
j=1

Nλ∑
λ=1

σλ
Γγ,λ

Γλ

ψ(θ, xλ) , (5.3)

Fission or the competitive reaction would be the same equation as the above but with“γ”
subscripts replaced by the above equation by the respective symbol to denote it, e.g. “f ” in
the case of the fission cross section.

The dimensionless temperature factor θ is:

θλ =
Γλ

√
A

2
√
kBTE

. (5.4)

A denotes the ratio of the target mass to that of the neutron, kB the Boltzmann constant,
T the material absolute temperature, and E the incident neutron energy.

The potential scattering cross section, taken to be constant on the fine scale of resonant
variations in energy, is:

σpot =
4π

k2

Nl−1∑
l=0

(2l + 1) sin(ϕl) . (5.5)

The phase shifts ϕl depend on the incident neutron energy, and can be found in [170].
The ψ,χ functions describe Doppler broadening of SLBW resonances [171]. They are:

ψ(θ, x) =

√
πθ

2
ℜw

(
θx

2
+ i

θ

2

)
(5.6)

χ(θ, x) =

√
πθ

2
ℑw

(
θx

2
+ i

θ

2

)
(5.7)
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and the Faddeeva function can be defined as (because θ > 0):

w(z) =
i

π

∫ ∞

−∞

e−t2 dt

z − t . (5.8)

The average neutron width can be obtained from the reduced neutron width as

⟨Γn⟩ =
Pl

ρ

√
E⟨Γn,0⟩ . (5.9)

Reaction widths for individual resonances are sampled by multiplying the mean widths by
random variables χ2

n/n. For completeness, we restate the density function for χ2 random
variables as:

pχ2
n
(y) =

yn/2−1

2n/2Γ(n/2)
e−y/2 , (5.10)

where Γ in this context refers to the gamma function.
Notably, the PURR module of NJOY generates χ2 random variables in an unconventional

way. Twenty samples from χ2 distributions with one, two, three, and four degrees of freedom
are hardcoded into NJOY. A random integer in [1, 20] is generated, and the value corre-
sponding to that index is chosen as representative of a sample. For this reason, matching
the results from NJOY exactly seems undesirable. It incorporates numerous approximations
and tricks rendered unnecessary with modern computing, so the slight mismatch against
NJOY encountered in [172] and our results is to be expected.

The values xλ are nondimensional distances from the center of each resonance:

x =
2(E ′ − Eλ)

Γλ

, (5.11)

The spin statistical factor is:

gJ =
2J + 1

4I + 2
. (5.12)

The shifted energies are:

E ′
λ = Eλ + Γn,λ

Sl(|Eλ|)− Sl(En)

2Pl(|Eλ|)
. (5.13)

In the unresolved region, the resonance energy shifts become negligibly small, so the approx-
imation that E ′

λ ≈ Eλ is applied. To our knowledge, all URR processing tools employ this
accurate approximation. The penetrability Pl and shift factor Sl have different dependencies
on ρ for each value of l. We refer the interested reader to [170] for their expressions.

The resonance energies are the eigenvalues of a random Hermitian matrix, so may be
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obtained either using a random matrix theory approach or using the asymptotic Wigner
distribution [172]. If we denote the spacing as ∆E = ⟨∆E⟩S, then Wigner’s asymptotic
result is that

S ∼ πx

2
e−πx2/4 . (5.14)

The total cross section is found for any partial cross section type by summing the elastic,
absorption, and fission cross sections. Notably, NJOY does not include the optional compet-
itive reaction. While in principle a large number of reaction types could be included, only
data for the elastic, absorption, fission, and an optional fourth channel are given in ENDF
[170]. The fourth channel acts to change the distribution of the Γλ terms only, since it is not
added in to the total cross section. The fourth channel is called the competitive channel,
and, for instance represents inelastic scattering that may open above some threshold energy
in the unresolved region. This behavior can be observed in 232Th.

The accurate approximation used in generating the unresolved resonance cross section
distribution is that energy-dependent parameters in these equations that are non-resonant are
fixed about the energy point of interest, whereas the fine structure granted by the resonance is
taken to vary on a fine scale, over which we assume the incident energy distribution is locally
uniform. Energy dependence of the width statistics, spacing distribution, wavenumber, and
phase shifts give a distribution of the cross section due to resonant fluctuations at each
tabulated energy.

In order to calculate the expectation value of the total cross section and its distribution at
intermediate energies, the resonance parameters must be interpolated, rather than the cross
section values. This historically led to disagreement [173] between the PREPRO [174] and
NJOY codes, and has been resolved today. In order to eliminate the impact of the methods of
generating the PT on the infinite-dilute cross section, the lssf flag was introduced in NJOY.
This flag specifies that the cross section, when sampled from a PT, should be multiplied by
the pointwise cross section value on the file. In other words, the cross sections on the PT
are normalized by the infinite-dilute cross section.

5.1.2 Related Works

The work [175] demonstrates on-the-fly temperature interpolation of probability bands for
modeling the unresolved resonance region. Their work confirms the 250 pcm effect of prob-
ability tables on the ZEBRA-8H benchmark of [176].

Another work [177] demonstrates the implementation of the ladder sampling for a new
unresolved region processing module called PURC. The innovations in PURC are a shared
memory parallelism approach to sampling resonance ladders and the use of an O(n log n)
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sorting algorithm for structuring the uniformly sampled energy grid on which cross sections
are reconstructed.

Some novel techniques have arisen over the past two decades for more accurately gen-
erating PTs. Dunn and Leal [178] describe a more physically rigorous method than that
employed by PURR. Their technique rigorously deals with the fact that naive use of the
Wigner distribution for the level spacing distribution is nonphysical. In fact, the levels are
repelled from each other as a consequence of them being eigenvalues of Hamiltonian matrices
[179]. Dunn and Leal first sample energy level differences from the Wigner distribution with
a standard PURR ladder technique, then reject based on the Dyson-Mehta ∆3 statistic [180].
This rejection step ensures physically realistic level repulsion, in contrast to NJOY’s PURR.
Similarly, [172] explores directly obtaining energy levels as the eigenvalues of a Gaussian
orthogonal ensemble (GOE). The results obtained were shown to provide the expected level
repulsion effects and exhibit roughly the Wigner spacing distribution.

In a similar vein, some other codes have explored more realistic cross section formulas,
as opposed to more realistic level spacings as described above. Walsh [181] has explored the
use of a multilevel Breit-Wigner (MLBW) formula for the cross section, and determined it
to have a negligible impact on criticality calculations for a few benchmarks compared to the
standard SLBW formulas. Similarly, [182] explored the use of the R-matrix limited (RML)
formalism for the computation of the cross section after sampling widths and energy levels.
To our knowledge, no code has yet both examined the results of using a more sophisticated
formula than SLBW and a realistic model of level spacings simultaneously.

The SLBW formulas are most inaccurate where resonances are closely spaced, and the
enhanced level spacing techniques tend to separate resonances from each other more. Con-
sequently, we can expect that while both MLBW/RML and GOE approaches on their own
may influence the results of a URR sampling calculation a bit, the energy spacing repulsion
effect will likely lessen the impact of deficiencies of the SLBW formula. This may explain
why the traditional PURR technique works well when rejecting unphysical negative cross
sections.

Wu et al. [183] describe a new module in the Ruler code system called NURD that generates
PTs using the ladder method. It uses a multithreaded algorithm and works substantially
faster than NJOY while matching its results. Hu et al. [184] describe the development of
the AXSP nuclear data processing code, which uses an improved energy grid sort, noting
that NJOY employs the O(n2) bubble sort algorithm. [185] describes mcres.py, a tool for
generating resonance sequences written using modern programming practices. URRPACK
[186] also is another code that can calculate the dilution tables of nuclides in the unresolved
resonance region.
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(a) 294K (b) 2500K

Figure 5.2: The unresolved resonance region for 238U begins around 20 keV and continues
to about 500 keV. The influence of temperature in the URR can be observed here; Doppler
broadening of resonances results in narrowing of the total cross section distribution. Darker
grey indicates a higher probability of encountering that value of σt.

Even if such an experiment were available to map the resonances into high energies, the
gain in reactor physics modeling capability would be marginal at best. Because the neutron
flux tends to scale as 1/E between the thermal and fast neutron regions in thermal reactors,
the capture rate in high-energy resonances is much lower than at lower energies. By modeling
individual sequences of statistically feasible resonances and performing independent Monte
Carlo calculations for each sequence, Walsh [181] has shown that the uncertainty due to the
lack of knowledge of the specific locations of resonances is around 50 pcm for a PWR pin
cell, 100 pcm for the ZEBRA experiment, and 10 pcm for Godiva, to name a few.

The typical behavior of the cross section in the unresolved resonance region has been
depicted in Fig. 5.2. The data used to generate this figure originates from ENDF/B-VIII.0
[161], and we used OpenMC’s nuclear data interface [187] for straightforward plotting. We
can see that the probabilistic interpretation of the cross section abruptly ends around 500
keV. It has been shown by Walsh [181] that the historical neglect of random variations in
the cross section at these higher energies (139-500 keV) introduces systematic discrepancy
between the Big Ten experiment and simulations. In fact, fine resonance structure extends
far into the fast neutron region.
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Figure 5.3: Example of the joint distribution between σγ and σs for 238U at 294K at 23 keV.

5.1.3 The Joint Partial Cross Section Distribution

Considering the clearly non-independent nature of the partial cross section components ap-
pearing in Fig. 5.3, before embarking on a new method to represent the full joint distribution,
we analyze the extent that results of steady-state transport calculations with unresolved res-
onances are influenced by joint effects. Conventionally, the joint effect has been modeled
via tabulation of the marginal distribution of the total cross section with accompanying
conditional expectations of the absorption, scattering, and fission components [164].

To address the question as to whether a new model for cross sections should incorporate
the full joint distribution of the component-wise cross sections, we below show that expec-
tations conditioned on the total cross section of partial cross sections suffice to produce the
mean flux at each point in space, energy, and angle under a few simple assumptions. The full
joint density need not be stored. While this has been shown intuitively in [188], we present
a rigorous argument below which precisely pins down the assumptions.
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Consider the fixed source transport equation with random cross sections.

Ω̂ · φ̂(r, E, Ω̂) +

∑
j

Nj(r)σt,j(E)

 φ̂(r, E, Ω̂) =

S(r, E, Ω̂) +

∫ ∞

0

dE ′
∫
4π

dΩ̂′

∑
j

Nj(r)σs,j(Ω̂
′ → Ω̂, E ′ → E

 φ̂(r, E ′, Ω̂′) , (5.15)

where Nj denotes the spatially dependent densities of each nuclide. For each E, we assume
that individual cross section components σt, σs are distributed jointly. As a consequence, the
angular flux in this model is a random variable with some fixed distribution at each point in
r, E, Ω̂ space, and this flux is correlated against the cross section variables.

The objective is to find the expectation of the flux, representative of the properly self-
shielded flux due to fine variations in cross section at a given energy point E. We will take
the expectation value of each side of the transport equation. To handle the left side,

E

Ω̂ · φ̂(r, E, Ω̂) +
∑

j

Nj(r)σt,j(E)

 φ̂(r, E, Ω̂)

 = (5.16)

Ω̂ · E[φ̂(r, E, Ω̂)] + E


∑

j

Nj(r)σt,j(E)

 φ̂(r, E, Ω̂)

 (5.17)

The first term on the left now contains the object of our interest, the properly self-shielded
flux. However, the term on the right does not allow distribution of the expectation due
to the correlation between fluxes and cross sections. To deal with this, recall that for two
random variables X, Y ,

EX,Y [f(X, Y )] = EY [EX [f(X, y)|Y = y]] . (5.18)

We apply this fact to the absorption term, conditioning on all the microscopic total cross
sections. The second term in Eq. 5.17 thus becomes:

E


∑

j

Nj(r)σt,j(E)

 φ̂(r, E, Ω̂)

 = Eσ̄t(E)


∑

j

Nj(r)σt,j(E)

E
[
φ̂(r, E, Ω̂)|σ̄t(E)

] ,

(5.19)
where σ̄t(E) is the vector of all random microscopic total cross sections at this energy, and
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the linearity of expecation has been employed after the total cross sections are considered as
deterministic random variables due to conditioning. This step requires the assumption that
the individual nuclide-wise random cross sections are not correlated with each other.

The source term is not random, so the expectation operator does not affect it. For the
scattering term, we suppose that expectation can distribute through the integrals over energy
and angle, and then consider:

E


∑

j

Nj(r)σs,j(Ω̂
′ → Ω̂, E ′ → E

 φ̂(r, E ′, Ω̂′)

 = (5.20)

Eσ̄t(E′)

E

∑

j

Nj(r)σs,j(Ω̂
′ → Ω̂, E ′ → E

 φ̂(r, E ′, Ω̂′)|σ̄t(E ′)


 = (5.21)

Eσ̄t(E′)


∑

j

Nj(r)E
[
σs,j(Ω̂

′ → Ω̂, E ′ → E
)
|σ̄t(E ′)

E
[
φ̂(r, E ′, Ω̂′)|σ̄t(E ′)

] = (5.22)

The first expectation is over all random variables: σt(E) and σs(E) for all values of E. The
second equality comes from the modeling assumption that cross section distributions between
different energies are independent. Of course, for energy differences on the scale of the size
of a resonance, they are in fact tightly correlated. The probabilistic approach to unresolved
resonances therefore can only be expected to be accurate at sufficiently high energies where
the scattering energy losses are much greater than the spacings between resonances.

The final equality of Eq. 5.22 comes from assuming that given a fixed set of microscopic
total cross sections, varying the scattering cross section at energy E ′ does not influence the
angular fluxes at E. This assumption is exactly true if the scattering operator only exhibits
downscattering. With upscattering back to the energy of interest or within-group scattering
in a multigroup approach, variation in the scattering cross section can change the fluxes at
energy E ′, albeit to a much smaller extent.

For simplicity, this discussion did not include temperature dependence. Correlation be-
tween temperatures certainly exists: to simulate a neutron crossing from temperature T to
another material of the same composition at temperature T ′ ̸= T then back to the same
composition with temperature T , the same random number must be recycled. Even though
the resonances are unresolved, in reality, their location is still fixed. On top of that, the cross
section should depend continuously on temperature without full resampling of the underly-
ing random state when passing from one temperature to another, since Doppler broadening
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continuously modifies the cross section with respect to temperature.
With each term analyzed, we can equate the expectations of each term in the transport

equation to find the self-shielded flux. In practice, this procedure amounts to the technique
used in any Monte Carlo code treating unresolved resonances: a total cross section is sampled
using a fixed uniform [0, 1) random number ξj corresponding to each nuclide of index j while
the particle is at the same energy. The partial cross sections are conditional expectations
conditioned on the sampled value of the total cross section. Only when scattering to a new
energy do the values of ξj change, which correctly reflects the assumptions detailed below
required to arrive at the expression for the energetically self-shielded flux:

• Negligible correlation between nuclide-wise cross section components at a given energy

• Negligible correlation of cross section for one nuclide between arbitrary E ′ ̸= E

• Neutrons cannot scatter from energy E to some other state then back to E

5.1.4 urrtools.py

Our python module urrtools.py uses the same basic methods as NJOY, but offloads re-
construction of cross sections at each sampled energy point to a GPU via pyCUDA [189].
We carry out the reduction from partial cross sections at each energy point to a histogram
in total cross section space with a specialized CUDA kernel that simultaneously tabulates
the conditional expectations of the partial cross sections for each σt bin.

The calculation of ψ and χ differs from NJOY; We employ the 16th order rational ap-
proximation to the Faddeeva function w(z) presented in [123]. Because the majority of
resonances are far away from each energy point, we enhance the computational efficiency of
our program by falling back to the asymptotic approximation w(z) ≈ i√

πz
for |ℜ[z]| > 20.

Our code does not match the results of NJOY for generating probability tables. Similarly,
[172] presents an independent implementation of unresolved resonance sampling which fails to
reproduce results from NJOY exactly. NJOY samples χ2 random variables in a consistently
biased way 1. Because the χ2 random variables feed into the resonance widths, NJOY biases
resonance widths consistently.

The file purr.f90 reveals an array named chisq defined as shown in Tab. 5.1. To
sample a χ2 random variable with n degrees of freedom, a random row from the nth column
is employed. Unfortunately, this pretabulated technique to quickly generate approximately
χ2 distributed random variables suffers from severely biased means. The means of each
column are respectively 1.86, 2.18, 2.59, and 3.36, but should equal 1, 2, 3, 4. Results

1at least as of commit 9adfc0898848b6864a71d3e7920d255ce45f7901
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Table 5.1: The samples of χ2
n random variables employed by NJOY, yielding incorrect average

samples.

χ2
1 χ2

2 χ2
3 χ2

4

1.31003e-3 9.19501e-3 .0250905e0 .049254e0
.0820892e0 .124169e0 .176268e0 .239417e0
.314977e0 .404749e0 .511145e0 .637461e0
.788315e0 .970419e0 1.194e0 1.47573e0
1.84547e0 2.36522e0 3.20371e0 5.58201e0
.0508548e0 .156167e0 .267335e0 .38505e0
.510131e0 .643564e0 .786543e0 .940541e0
1.1074e0 1.28947e0 1.48981e0 1.71249e0
1.96314e0 2.24984e0 2.58473e0 2.98744e0
3.49278e0 4.17238e0 5.21888e0 7.99146e0
.206832e0 .470719e0 .691933e0 .901674e0
1.10868e0 1.31765e0 1.53193e0 1.75444e0
1.98812e0 2.23621e0 2.50257e0 2.79213e0
3.11143e0 3.46967e0 3.88053e0 4.36586e0
4.96417e0 5.75423e0 6.94646e0 10.0048e0
.459462e0 .893735e0 1.21753e0 1.50872e0
1.78605e0 2.05854e0 2.33194e0 2.61069e0
2.89878e0 3.20032e0 3.51995e0 3.86331e0
4.23776e0 4.65345e0 5.12533e0 5.67712e0
6.35044e0 7.22996e0 8.541e0 11.8359e0

from NJOY’s PURR module should be interpreted cautiously despite decades of validation
studies.

Sampling of the cross section correctly handles temperature correlation effects during
sampling. Namely, the same set of resonance positions should be used for each temperature
to evaluate the cross section at in order to ensure correct temperature dependence of an
individual ladder sample.

5.1.5 Numerical study of the σt distributions in a few conditions

We present some numerical results here that exhibit the variety of shapes exhibited by the
σt distribution. We consider a single spin state with SLBW resonances as described by Eq.
5.23. Table 5.2 describes the cases covered by our parameter sweep. No competitive cross
section variation has been included due to its effect being the same as a fission component.
The absorption width was held fixed at 0.035, where the units here are arbitrary. Figures
5.4 and 5.5 show the results.

We can identify a few distinct behaviors here. For the case when Γt is comparable to
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Table 5.2: Parameters swept to explore σt distribution at zero kelvin for a single spin state.

Case ϕ Γ̄n (DOF) Γ̄f (DOF)
1 0.0 0.07 (1) 0.0
2 0.3 0.07 (1) 0.0
3 0.0 0.14 (1) 0.0
4 0.3 0.14 (1) 0.0
5 0.0 0.07 (1) 0.035 (3)
6 0.3 0.07 (1) 0.035 (3)
7 0.0 0.07 (2) 0.0
8 0.3 0.07 (2) 0.0
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Figure 5.4: Cases 1-4 in the single spin state parameter sweep.
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Figure 5.5: Cases 5-8 in the single spin state parameter sweep.
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⟨∆E⟩, i.e. ∆ ≈ 1, a slightly skewed universal parabolic behavior can be observed in log
probability density space. Therefore, a skew Gaussian may model this regime well. For
the intermediate values of ∆, a straight lines for the tails suggest exponentially distributed
behavior, as once observed [190]. In fact, Hwang in that work had suggested fitting distri-
butions with exponential tails to the cross section distribution and demonstrated success for
some actinides, but it seems this approach never materialized to a useful scheme.

As ∆ → 0, the distribution limits to another shape. We show in the next section that
the small ∆ behavior can be very accurately described as a Cauchy distribution truncated
to the range of allowable σt values.

5.2 An Analytic Model to the Cross Section Distribution

We are aware of only three works which sought analytical models of the cross section distri-
bution in the unresolved region. Recently [191] sought such a representation, but no results
on the probability distribution exhibited by the cross section were presented.

Starting from random R matrix theory and assuming uniformly spaced resonances, Jor-
danov et al. [192] were able to analytically compute the attenuation of neutrons with a
random cross section. Unfortunately, this approach does not satisfy the needs of Monte
Carlo codes which seek to sample values of the cross section. In other words, no results
regarding the probability distribution of the cross section were presented. However, letting
the cross section be a random variable as a result of the R matrix being random, Jordanov
was able to obtain the expected attenuation. Notably, the attenuation function in the case
of random cross sections deviates from the standard exponential behavior. The portion of
neutrons with energies matching resonances attenuate out first, thus causing non-exponential
attenuation.

Crucially, Jordanov’s work had to assume uniformly spaced resonances to obtain these
results. Seeking an analytical model of the full unresolved resonance system including vari-
able resonance widths and spacings summed over a variety of spin states is a mathematical
sword in the stone. In order to study this problem, we first consider the distribution of the
total cross section taken on by a single spin state with evenly spaced resonances of equal
width, assuming a randomly sampled incident energy.

Kumar [193] presents some of the most impressive results regarding random cross sections.
In this case, the "off-diagonal" component of scattering is studied. In other words, the work
focuses on the (p, α) cross section. Kumar et al. assume randomness in the R matrix
and rigorously show that this reaction cross section takes on an exponential distribution.
Unfortunately, for the total neutron cross section under study here, the behavior is quite
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clearly differing from an exponential. Rigorous analytical tractability seems impossible.
Hwang’s last paper [194], published posthumously, presents remarkable work which we

did not discover until the conclusion of this study. In fact, according to Google Scholar,
no other works have cited this paper. Hwang’s last work publishes the only analytical
descriptions of the cross-section distribution that are potentially practically useful for nuclear
engineering analysis. He provides an intuitive argument that under the narrow resonance flux
approximation, only the distribution of σt and the conditional expectations of partial cross-
sections E[σx|σt] are required to compute properly self-shielded reaction rates. Notably, our
rigorous argument above removes the need to assume a narrow resonance flux, and therefore
provides an important theoretical contribution in that regard justifying the conventional
practice of neglecting joint cross-section correlation effects.

The work [190] provides analytical expressions for the distribution of the cross-section
in the case of a single isolated Breit-Wigner resonance at zero kelvin. In contrast, our
coming derivation is for an infinite sequence of resonances of equal spacing, which presents
slightly different results. Referring to that work after this one, the similarity of the resulting
expressions is clear. However, on top of only applying to a single resonance, Hwang’s result of
course only corresponds to a single spin state. The actual cross-section is composed of many
summed spin states. Correspondingly, we use these results as only one piece of the puzzle to
inform a practically useful form of the cross-section distribution. Importantly, this work also
contributes proposed analytical forms for the conditional means of the partial cross-sections
conditioned on the total in the single spin state, isolated Breit-Wigner resonance case. These
results inspire our approach to that problem based on rational polynomials.

Studying this system which resembles the unresolved resonance sampling problem may
yield insight or can be adjusted to model the fully complex sampling problem. We are able to
obtain an approximation to the cross section as a limiting case for widely spaced resonances
at zero temperature that matches real ENDF/BVIII.0 data quite well. To our knowledge
such a result is first-of-a-kind.

We first consider the case of constant resonance widths and spacings, with randomly
placed energies, with a single spin state present and at zero temperature. The zero kelvin
cross section can be written as:

σt(E) = σpot +
4πΓngJ
Γtk2

∞∑
j=−∞

cos(2ϕ) + sin(2ϕ)2(E−Ei)
Γt

1 +
(

2(E−Ei)
Γt

)2 , (5.23)

which can be found from summing Eq. 5.1 and all reactions of Eq. 5.3. The above results
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from noting that the term on the left of the next equation can be rewritten:

1− Γn/Γt =

∑
x∈{γ,f,compet} Γx

Γt

, (5.24)

and noting that this quantity is subtracted out in Eq. 5.1. This leads to the simplification
that the total cross section only depends on the other reaction resonance widths through the
total width term, with a direct dependence on the scattering width term.

We now define the mean nondimensional resonance width as:

∆ =
Γt

2⟨∆E⟩ . (5.25)

In our model problem with equidistant resonances, Ej = j⟨∆E⟩, which allows us to rewrite
Eq. 5.23,

(σt(E)− σpot)Γtk
2

4πΓngJ
= ∆

∞∑
j=−∞

∆cos(2ϕ) + sin(2ϕ)
(

E
⟨∆E⟩ − j

)
∆2 +

(
E
⟨E⟩ − j

)2 (5.26)

We now observe that the term on the right resembles taking the real part of a complex
number’s reciprocal 1/z, found as ℜz̄/(z̄z). In this case we pick z = E/⟨∆E⟩ − j − i∆,
resulting in:

∆cos(2ϕ) + sin(2ϕ)
(

E
⟨∆E⟩ − j

)
∆2 +

(
E
⟨E⟩ − j

)2 = ℜ
[
sin(2ϕ) + i cos(2ϕ)

E/⟨∆E⟩+ i∆+ j

]
(5.27)

The linearity of the ℜ operator lets us factor it out of the summation. We then apply “the
most interesting formula involving elementary functions” [195]:

π cot(πx) = lim
N→∞

N∑
j=−N

1

x+ j
∀x ∈ R \ Z (5.28)

Assuming this holds in the upper complex plane (which appears numerically to be the case),
this leads to a fascinating, useful result about equidistant, equi-width resonance ladders:

(σt(E)− σpot)Γtk
2

4πΓngJ
= ℜ

[(
sin(2ϕ) + i cos(2ϕ)

)
π cot

(
π
(
E/⟨∆E⟩+ i∆

))]
(5.29)

We then apply the identity:

ℜ[cot(a+ bi)] =
cot a coth2 b− cot a

cot2 a+ coth2 b
(5.30)

174



which leads to the expression:

(σt(E)− σpot)Γtk
2

4πΓngJ
=

cos(2ϕ) coth(π∆)
(
cot2( πE

⟨∆E⟩) + 1
)
+ sin(2ϕ) coth2(π∆) cot2( πE

⟨∆E⟩)

cot2( πE
⟨∆E⟩) + coth2(π∆)

.

(5.31)
To make the notation more compact, we define the nondimensional total cross section as:

s(E) =
(σt(E)− σpot)Γtk

2

4πΓngJ
. (5.32)

Eq. 5.31 can lead to a few asymptotic regimes depending on ∆ and ϕ. For p-wave and
higher resonances, ϕ tends to become quite small. Some nuclides have a relatively high
resonance spacing to width ratio, and we derive the distribution of this case, because it
represents nuclides with the highest variance in the cross section.

5.2.1 Large values of ∆, e.g. 238U’s s wave

In this case, we have that coth2(π∆) ≫ coth(π∆), because ∆ is small. As a consequence,
we neglect the first term in the numerator of Eq. 5.31, leading to the expression:

(σt(E)− σpot)Γtk
2

4πΓngJ
=

sin(2ϕ)

cot
(

πE
⟨∆E⟩

)2

coth(π∆)2
+ tan

(
πE

⟨∆E⟩

)2 . (5.33)

Finally, we have arrived at an expression that can be solved for E in closed form as two roots
of a quadratic equation in tan

(
πE

⟨∆E⟩

)
. Of course, there are an infinite number of solutions

to the equation tanx = c function for any given c ∈ R. This is both physical and beneficial.
Because we assume E to be uniformly distributed over the whole real line, it lets us restrict
our attention to a single period of the tangent function. With this, we can solve the quadratic
and find two possible solutions:

tan

(
πE

⟨∆E⟩

)
=

1

2
s−1 sin(2ϕ) +

√
1

4
s−2 sin2(2ϕ)− coth(π∆)−2 , (5.34)

or

tan

(
πE

⟨∆E⟩

)
=

1

2
s−1 sin(2ϕ)−

√
1

4
s−2 sin2(2ϕ)− coth(π∆)−2 . (5.35)

Fig. 5.6 shows how these equations apply to different parts of a scattering-dominated reso-
nance in the total cross section. Recalling the fact that if f(x) is a monotonic function, and
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Figure 5.6: The quadratic tangent approximation can be analytically inverted to find its
probability density function.

X has the probability distribution pX(x), it follows that Y = f(X) has the distribution

pY (y) =
∣∣∣df−1(y)

dy

∣∣∣ pX(f−1(y)) . (5.36)

Of course, σt(E) is far from a monotonic function. We claim, though, that it can be broken
into an increasing part and a decreasing part over its period. Eq. 5.37 can be generalized
by noting that if f increases and decreases monotonically over N intervals Ij, we have that
Y follows a mixture distribution:

pY (y) =
N∑
j=1

∣∣∣∣df−1
j (y)

dy

∣∣∣∣ pX(f−1
j (y))P[x ∈ Ij] . (5.37)

Because the function f−1 is not unique, f−1
j refers to the inverse over the interval Ij where

it is monotonic. We also point out that if for a given value of y, y /∈ Dom(f−1
j ) implies that

term of the summation needn’t be considered.
With this in mind, we point out that the cross section distribution will rigorously take

the form:

pσt(σt) =
∞∑

j=−∞
P
[
E ∈ [Ej − ⟨∆E⟩/2, Ej + ⟨∆E⟩/2]

] 2∑
k=1

1

∆Ek

∣∣∣dEj,k

ds
ds
dσt

∣∣∣ . (5.38)

Where the j index indicates the infinity of possible intervals resulting from the inversion of
the tangent function of Eq. 5.34 or 5.35. The k index indicates taking within the j possible
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values one of the two branches given by respectively Eq. 5.34 and 5.35. Because all the
resonances are identical in this simplified model, and we take E to be uniform over the real
line, we have that

∞∑
j=−∞

P
[
E ∈ [Ej − ⟨∆E⟩/2, Ej + ⟨∆E⟩/2]

]
= 1 (5.39)

and that the dEj

ds
terms are equal within each interval. Moreover, we note that in Fig. 5.6

the two of four inner sections contribute negligible probability in this case of small ∆. On
top of that, the outer two branches are symmetric about s = 0. Consequently, we need only
derive the behavior of the distribution from one branch for s > 0 and, if symmetric about
s = 0, will remain valid for the s < 0 region too.

Putting this into symbols, it implies that:

pσt ≈
−2
⟨∆E⟩

ds
dσt

d
ds

⟨∆E⟩
π

arctan

(
1

2
s−1 sin(2ϕ) +

√
1

4
s−2 sin2(2ϕ)− coth(π∆)−2

)
(5.40)

=
1

π
ds
dσt

sin(2ϕ)s−2 + sin(2ϕ)

s3
√

s−2 sin2(2ϕ)−4 coth(π∆)−2

1 +
(
s−1 sin(2ϕ) +

√
s−2 sin(2ϕ)2 − 4 coth(π∆)−2

)2 . (5.41)

This is not an insightful expression, and deserves approximation. We multiply the top and
bottom by s2 and find the second numerator term negligible in this case.

pσt(σt) =
π−1 ds

dσt

s2 sin(2ϕ)−1
(
1 + tanh(π∆)2

)
+
√

1
4
sin(2ϕ)2 − s2 tanh(π∆)2 + 1

2
sin(2ϕ)

(5.42)

In order to put this into a form of a well-known distribution, we approximate the radical
term by a parabola about s = 0, leading us to a simple model of unresolved resonances when
the spacing is wide:

σt ∼ Cauchy

(
σp,

π2 sin(2ϕ)gJ⟨Γn⟩
4⟨∆E⟩k2

)
(5.43)

To test the validity of Eq. 5.43, we simulated the cross section distribution for the s-wave
contribution to the 238U total cross section at a 20 keV incident neutron energy on zero kelvin
targets. The s-wave potential scattering contribution was also included in addition to the
resonances. Parameters from the nuclear data file were used to calculate the parameters
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Figure 5.7: Eq. 5.43 can accurately model the total cross section distribution when the phase
shift angle is low and the resonances are widely spaced.

appearing in Eq. 5.43. We emphasize that no curve fitting took place.
Fig. 5.7 shows excellent predictive ability of Eq. 5.43. A similarly good fit can be

observed for other nuclides where the scattering phase shift is sufficiently small and the
resonances widths are less than 1/20 the mean resonance spacing. Fortunately, as will be
revealed soon, we only must motivate the modeling of the cross section distribution as nearly
Cauchy when the resonance spacing to width ratio is large.

Small ϕ values

In the case that the scattering phase shift, ϕ, is large, the resulting distribution of the spin
sequence’s cross section tends to take on a -3/2 power law distribution. A large phase shift
can be typically encountered in the higher angular momentum spin sequences, e.g. 238U’s
p-wave as we demonstrate here.

If ϕ is relatively small, then the right side of Eq. 5.31 can be approximated as:

(σt(E)− σpot)Γtk
2

4πΓngJ
=

cos(2ϕ) coth(π∆)

cos
(

πE
⟨∆E⟩

)2
+ coth (π∆)2 sin

(
πE

⟨∆E⟩

)2 (5.44)

(5.45)

By solving for E and differentiating w.r.t. σt, the distribution of σt can again be found.
In this case, we again consider the case where ∆ ≈ 0, and observe that the probability
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Figure 5.8: Eq. 5.47 qualitatively describes the cross section distribution as a -3/2 power
law for widely spaced resonances and a small phase shift, e.g. as commonly encountered for
p-wave resonances.

distribution approaches a σ−3/2
t power law distribution. Because the normalizing constant of

this distribution is undefined if including the left endpoint of its support σt = 0, a reasonable
minimum value of σt has to be chosen to compensate for the approximations introduced which
have brought the distribution to the simple -3/2 power law form.

Using the following minimum cross section to normalize the distribution gives satisfactory
results over a wide range of parameters when ϕ is relatively small.

σmin =
2⟨Γn⟩gJ
π⟨Γt⟩k2

cos(2ϕ) tanh(π∆) (5.46)

The distribution of σt for large values of ϕ can then be considered to be:

pσt(σt) ≈
√
σmin

2σ
3/2
t

. (5.47)

Fig. 5.8 shows how the -3/2 power law fits the qualitative behavior of the distribution of the
total cross section of the p wave resonances quite well.

In sum, we have shown that in the case of widely spaced resonances, two asymptotic
regimes exist corresponding to dominant sin(2ϕ) or dominant cos(2ϕ) terms. Intermediate
cases could likely be modeled as a mixture of a -3/2 power law and Cauchy distribution,
although we show later that another distribution can model almost any unresolved resonance
total cross section with acceptable accuracy.
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5.2.2 The intermediate ∆ region, e.g. 239Pu

To our knowledge, the only characterization of the behavior of the unresolved resonance cross
section distribution was presented in [190]. Hwang observed that in most nuclides of practical
interest, the total cross section probability distribution tends to form a unimodal distribution
exhibiting two exponential tails. In other words, Hwang observed that semilogarithmic in
ordinate plots of the density function of the total cross section for actinides tends to exhibit
two straight lines. This behavior can be observed for the intermediate values of ∆ in Figs.
5.4 and 5.5. Hwang observed that the hypoexponential distribution matches precisely this
behavior, and he showed in [190] that this can be made to adequately fit the unresolved
resonance cross section distribution for a few isotopes.

In our experience, however, Hwang’s proposed hypoexponential model fails to model a
whole library of nuclides. There exist other unimodal distributions which exhibit constant
logarithmic derivative behavior on either side of the mode, the Laplace distribution, for
example. It was precisely this straight line behavior that inspired Barndorff-Nielsen to
develop the hyperbolic distribution [196] to fit the distribution of sizes of wind-blown sand
grains in log-log space. We found some moderate success fitting the hyperbolic distribution to
unresolved resonance cross section distributions, but another yet-to-be-discussed distribution
provides better fits across the full range of ∆.

Rather than undertake the arduous task of provisioning theory showing that the distribu-
tion of a randomized sum of single-level Breit-Wigner resonances tends to yield exponential
tails, we follow the lead of Hwang and merely relegate this as an empirical observation.
The work [197] rigorously demonstrates how to determine the tail probability behavior of
randomly weighted sums of dependent random variables. If the SLBW shapes of the form
1/(1 + x2) and x/(1 + x2) are treated as dependent random variables (given that the reso-
nance spacing is random) and the factors multiplying them are indepdentent, the framework
of [197] can likely be applied to explain Hwang’s observations.

5.2.3 The Small ∆ region, e.g. 235U

Lastly, Figs. 5.4 and 5.5 show that for small values of ∆, or in other words tightly spaced
resonances, the distribution of the total cross section becomes concave on a log-y plot. In
fact, the cross section becomes reasonably approximated by a normal distribution.

To explain this fact, we recall that in the central limit theorem, a sum of independent
and identically distributed random variables tends towards having a normal distribution.
Similarly, a sum of a few independent and identically distributed random variables might be
approximated as normally distributed. If we consider the sum over SLBW resonances with
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random widths and spacings:

σt(E)− σpot ∝
j=∞∑
j=−∞

Γ̂n

Γ̂t

cos(2ϕ) + sin(2ϕ)
2(E−Ej)

Γ̂t

1 +
(

2(E−Ej)

Γ̂t

)2 (5.48)

we can observe that the Γ̂n/Γ̂t values in the summation are all independent from each other.
Moreover, they are identically distributed. When the resonances are spaced together closely,
the SLBW shape terms on the right under the summation tend to the same value, as E−Ej

is much smaller than Γ̂t when the resonances are tightly spaced. Consequently the first
few terms in the series nearest the value of E will have similar values of the SLBW shape
modulation, since they tend towards unity as E − Ej becomes small. It then follows that
the summation consists of a sum over nearly independent and identically distributed terms
plus a contribution from far-away resonances.

Future work could more rigorously explore this. It should be possible to rigorously prove
that in the limit as ∆→ 0, when properly normalized by some factor, the total cross section
should tend towards a normal distribution. We leave this for future work as a more rigorous
treatment here adds little to the forthcoming discussion. The key observation is that for
small values of ∆, the cross section tends towards a normal distribution.

5.2.4 A Reasonable Form of the Distribution of σt For All Regimes

Applicability of the NIG Distribution

A probability distribution defined by a small number of parameters which can exhibit the
three properties in our foregoing discussion could satisfactorily model the distribution of σt
in the unresolved region. Firstly, the distribution must be able to approximate a Cauchy
distribution in order to match the behavior of the regime demonstrated in Subsection 5.2.1.
Secondly, the distribution should be able to exhibit linear tails in log space to cover the
case analyzed in subsection 5.2.2, and if possible, the slope of these tails should be an
adjustable parameter. Finally, the distribution should be able to match the shape of a
normal distribution as exhibited in Subsection 5.2.3.

The normal inverse Gaussian (NIG) distribution [198] accomplishes exactly these tasks
with only four parameters. It is defined by the density function:

NIG(x; a, b, µ, δ) =
aδK1

(
a
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

exp
(
δγ + b(x− µ)

)
, (5.49)
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where γ =
√
a2 − b2.

In the case of widely spaced resonances, the distribution of σt resembles a Cauchy distri-
bution as shown by Fig. 5.7. Near the mode of the distribution, the NIG distribution can
approximate a Cauchy distribution. To see this, we recall that for small x, K1(x) ∼ x−1.
We then have that for x ≈ µ and small δ,

NIG(x; a, 0, µ, δ) ∼ 1

πδ
(
1 + (x−µ

δ
)2
) (5.50)

which is exactly a Cauchy distribution. The a parameter is still free and can still model tail
effects encountered where the assumptions of Subsection 5.2.1 break down.

Secondly, as discussed in Subsection 5.2.2, a distribution used to model the distribution
of σt should be able to model tails that are roughly linear on a log plot. It was this behavior
that suggested to Hwang [190] that a hypoexponential distribution might suffice. Indeed,
the NIG distribution has this property. To see it, we we apply the asymptotic estimate for
large x that K1(x) ∼

√
π
2x
e−x. It straightforwardly follows that the asymptotic logarithmic

derivatives are β−α for x→∞, and β+α for x→ −∞. Consequently, it forms straight lines
on a log plot in the limit, as originally suggested by Hwang. We note that other distributions
in the generalized hyperbolic [196] family of distributions satisfy this property, but the NIG
additionally approximates a Cauchy distribution well near its peak.

Finally, Subsection 5.2.3 suggests that a normal distribution might reasonably approxi-
mate the cross section distribution for small values of ∆. For this point, we direct the reader
to [198] to see that the NIG distribution can arbitrarily closely approximate a Gaussian.

One possible critique of the argument in favor of the NIG distribution’s utility here
concerns the presence of multiple spin sequences. The previous argument only considered a
single spin state sequence of resonances. Noting that the spin sequences are independent of
each other (save for zeroed out negative cross sections due to the flaws of SLBW), the overall
distribution of σt is a convolution of the distributions of the partial total cross sections from
each spin sequence. Because the NIG distribution is closed under convolution [199], the
resulting sum over several spin states will also be NIG-distributed.

Another potential hole in this reasoning results from the effect of temperature. All the
forthcoming reasoning relied on the zero kelvin cross section. The logic may not necessarily
hold at nonzero temperature. Consequently, we naively suppose that the NIG distribution
might work across a variety of temperatures, which our results demonstrate empirically to
be certainly true.
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Sampling The Bounded NIG Distribution

The whole family of generalized hyperbolic distributions can be interpreted as infinite mix-
tures of normal random variables with variances distributed by generalized inverse Gaussian
distributions [198]. Specifically, samples z which have z ∼ IG(δ(a2 − b2)−1/2, a2 − b2) which
are used to sample x ∼ N (µ+ bz, z) result in x ∼ NIG(a, b, µ, δ). Equivalently,

NIG(x; a, b, µ, δ) =
∫ ∞

0

IG(z; δ/γ, δ2)N (x;µ+ βz, z) dz . (5.51)

This fact can be combined with the efficient sampling procedure for inverse Gaussian dis-
tributed variables presented in [200] to efficiently sample a NIG-distributed random variable.
Algorithm 13 presents the combined IG sample and variance mixture sampling algorithm.
As a rule of thumb, shallow branches can run efficiently on a modern GPU, so we can expect
this algorithm to outperform probability tables on our target architecture.

Input : a, b, µ, δ
γ ←

√
a2 − b2;

Sample w0 ∼ N (0, 1);
w ← δw2

0/γ;
c← (2δγ)−1;

x← δ/γ + c
(
w −

√
w(4δ2 + w)

)
;

Sample u ∼ Unif([0, 1]);
if u ≥ δ/(γ(δ/γ + x)) then

z ← δ2/(xγ2);
else

z ← x;
end
return sample from N (µ+ βz, z);
Algorithm 13: Algorithm to sample a variable distributed as NIG(a, b, µ, δ).

5.3 Results

5.3.1 Generation of a Finely Resolved URR Library

We generated a highly resolved library of σt distributions for every energy point of every
nuclide exhibiting unresolved resonance behavior in ENDF/B-VIII.0 [161]. Two hundred
bin histograms were used to tally the total cross section probability density and conditional
expectations of the partial cross section given the total. In contrast, default OpenMC nuclear
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data processing options [187] use NJOY to build a twenty bin histogram, with sixty-four
independent resonance ladders. While NJOY samples the ladder at ten thousand uniformly
sampled energy points, we sampled each ladder at one hundred thousand random points.
Our code still employed sixty-four independent ladders for each energy point of each nuclide.

Creating a new program devoted to highly resolved unresolved resonance probability
table generation proved necessary. On an AMD Ryzen 7950X CPU, NJOY sampled the
full set of probability tables for 238U over six different temperatures in 1593 s. Assuming
optimal scaling 2, NJOY would take 15,930 s to build the highly sampled probability tables
that our code generated. In contrast, our code took 0.1 s to sample the resonance locations
and sort the energy sample grid of each ladder for 238U, with 2.5 s spent reconstructing the
cross section on 100,000 points for each of the six temperatures. The six temperatures are
250, 294, 600, 900, 1200, and 2500 kelvin.

5.3.2 Fitting the σt Model

Because the moments of the NIG distribution are available in closed form, a method of
moments estimator could be used to fit the distributions of σt; however, the σt samples
tend to be bounded above and below, albeit while following a NIG distribution closely over
their support. Because the standard NIG distribution has infinite support, the standard
expressions for the moments do not apply. Moreover, the moments of a NIG distributed
random variable restricted to a contiguous section of the real line do not have analytically
tractable expressions, to our knowledge.

Without a method of moments estimator easily available, one might similarly consider a
maximum likelihood approach to estimating the parameters of a NIG distribution. Because
we sample a total of 6,400,000 realizations of σt per temperature and energy point, the
resultant nonlinear fitting problem would be inconveniently computationally expensive.

Due to these barriers, we fit the density function of a NIG distribution restricted to the
same range as that presented by the first ladder sampled of the σt data. The normalizing
constant must be numerically calculated to find the correctly scaled value of the density. To
fit the densities, we minimize the Hellinger distance,

H(P,Q) =
1√
2

(∫ (√
P (x)−

√
Q(x)

)2
dx

)1/2

, (5.52)

approximated by numerical integration over our finely divided histograms. This distance
2[177] points out that the energy grid sorting algorithm of NJOY is O(n2), so the actual number would

be higher.
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metric has been shown to exhibit desirable properties [201]. The Hellinger distance can be
understood as proportional to the root mean square difference between the square roots of
two density functions. The use of Hellinger distance over standard least squares minimiza-
tion between the density function provides a desirable balance between minimizing error in
the most probable regions and properly modeling the behavior in the tails of the probabil-
ity distribution. In contrast, we found minimizing the Kullback-Leibler divergence exces-
sively prioritized matching the values in the tails of the distribution, and naive least-squares
minimization between the density function difference excessively prioritized matching the
densities around the distribution’s mode.

The numerical integration for the NIG distributions normalizing constant was carried
out with SciPy [202]. Likewise, the nonlinear optimization problem presented by minimizing
the Hellinger distance was solved with the Nelder-Mead method wrapped by SciPy. We
found that applying bounds to the NIG parameters improved the reliability of the optimizer
substantially, namely that α > 0, β > 0, δ2 > 0, and µ > mini σt,i, where σt,i represents
the realizations of the total microscopic cross section. The bound β > 0 strictly speaking
is not required of the NIG distribution; it is instead based on our observation that the σt is
exclusively skewed to large values and never otherwise.

Still, the nonlinear optimizer crashed on many nuclides due to NaN being generated.
These were found to result from the multiplication of underflowed zeros and overflowed
infinities respectively generated by the K1 term of Eq. 5.49 and the exponential term. The
code must branch to handle this asymptotic case separately. We chose the criterion for the
asymptotic branch as any argument to the exponential function over seven hundred.

Some fraction of negative σt observations may be encountered when using the SLBW
model to generate unresolved resonance region models. In practice, negative cross sections
on a probability table are modeled instead as some small value; NJOY arbitrarily uses a
microbarn. In order to maintain the same behavior as NJOY, we fit to the dataset including
negative values but return a microbarn total cross section when negative cross sections are
sampled. More physically realistic methods for sampling the cross section distribution such
as R-matrix limited [182] may reveal new behaviors in the small cross section region that
require a new form of modeling, and our method could incorporate that by using it as part
of a mixture distribution.

A select few nuclides of importance to reactor simulation are presented in Fig. 5.9 and
5.10. The plots show some representative results of obvious importance for 235U, 238U, 239Pu,
and 240Pu. 107Ag has been included due to its use in control rods and natural abundance
around 52%. 137Cs has been presented due to its prominence in radiological source terms.
We include some results for 55Mn due to it constituting all natural manganese; we have
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(d) 239Pu σt distribution at 2.85 keV.

Figure 5.9: Comparison of pointwise σt probability density estimates from our urrtools.py
simulation (points), fits to NIG distributions (smooth lines), and NJOY PURR results
(stairsteps).

observed that in both our code and in NJOY the SLBW approach yields a large fraction of
negative cross sections. Notably, in Fig. 5.10c we have not zeroed out the negative values in
order to show the fit of our model to the raw data.

Figure 5.11 shows one case where a poor match against NJOY was discovered. Our
initial hypothesis for this discrepancy pertained to the biased resonance width sampling, but
a patched version of NJOY proved that to be false. Given the large number of numerical
approximations present in NJOY, we suspect some difference in our modeling choices, for
example the number of “outer” resonances not in the sampling window, likely plays a role
here. Further research seeking to deploy this method in a practical setting will have to
resolve this discrepancy.
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(c) 55Mn σt distribution at 600 keV.
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(d) 240Pu σt distribution at 5.70 keV.

Figure 5.10: Same as Fig. 5.9 but for some other nuclides.
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Figure 5.11: 235U σt distribution at 2.25 keV matches NJOY poorly.
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5.3.3 Fitting the Partial Cross Section Model

As discussed in Subsection 5.1.3, the conditional expectations of the partial cross section
components suffice to obtain properly self-shielded fluxes in a Monte Carlo simulation. Con-
sequently, we must obtain a curve fit that outputs the expected partial cross section of
interest given a value of σt. In order to yield a clear benefit over the traditional probability
tables approach, the model should require a fairly small amount of data yet approximate the
cross section curve accurately.

Ideally, a physically motivated expression for E[σx|σt] could be obtained. Our prelimi-
nary investigation, under some crude assumptions, suggested that the absorption and fission
partial cross sections might be approximated accurately using a rational polynomial expres-
sion. Regardless, rational polynomial functions have universal approximation properties to
analytic and more generally Lipschitz-continuous functions [203], so further justification of
this approach is unnecessary.

On top of this, Hwang’s final paper [194] also shows that the expression for E[σx|σt]
should take the form of a ratio of square roots, which may be closely approximated by
rational polynomials

√
σt when

√
σt is not near its upper or lower limiting values. This

stands as even more reason to believe that low-order rational approximations can match the
desired behavior closely.

NJOY or urrtools.py both output a tabulation of the expectation value of each partial
cross section contributing to the total within in each histogram bin. The task at hand then,
is simple curve-fitting to these outputs. The traditional probability table approach would
save these as points to be interpolated. The benefit of a curve fitting approach is twofold:
firstly the noise from the simulation used to generate the data is suppressed by using a low
number of degrees of freedom, and secondly the function becomes more applicable for GPU
applications which, at peak performance, employ a higher floating point to memory access
operation ratio. Moreover, the memory access pattern is predictable, unlike the probability
table approach. Preventing memory access divergence is essential to utilize GPUs efficiently.

Rational polynomial fitting is a nontrivial research problem itself, and algorithms spe-
cialized for it typically must be used as discussed in [204]. The recently presented adaptive
Antoulas-Anderson (AAA) algorithm [205] is, in our opinion, the most straightforward and
powerful means of rational polynomial fitting at present. The strength of this algorithm
originates from its representation of rational functions in rational barycentric form,

r(z) =
n(z)

d(z)
=

∑m
j=1

wjfj
z−zj∑m

j=1
wj

z−zj

, (5.53)
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where n(z) and d(z) are polynomials, and zj are evaluation points to evaluate function
values fj at. The coefficients of the polynomials n(z) and d(z) need not be computed. The
work [206] discusses the numerical advantages that the barycentric rational form possess.
For a certain choice of wj, the classical Lagrange interpolant is obtained. For the choice
wj = {1,−1, 1,−1, . . .}, a smooth rational interpolant is obtained [207].

Our initial attempts at fitting to the conditional expectations of the partial cross sections
using general rational polynomials of the direct rational form n(z)/d(z) were clear failures.
The coefficients in the numerator and denominator can have enormous differences in their
influence on the fit quality: for example high order monomial coefficients clearly vary the fit
more than the lower order parts. Using a Chebyshev basis for each polynomial might have
remediated this issue, but a nonlinear fitting approach using the barycentric rational form
offers superior numerical characteristics and interpretability.

An initial guess to a nonlinear fitting problem like this can accelerate computations
appreciably, especially considering the problem of curve fitting at every energy point, at
each temperature, for each nuclide. Barycentric rational forms furnish a straightforward
approach to this. The number of summation terms m is decided ahead of time in building
the library; m = 5 appears to be more than enough for the problem at hand. Next, five
points zj have to be chosen. Because the data at hand comes from conditional expectations
within each bin of a histogram of the total cross section, the points zj can be distributed
evenly in σt probability.

To find the points, the cumulative distribution function approximated by summing his-
togram bins can be found, calling this function C(σt). Then, the zj are zj = C−1(j(max σ̂t−
min σ̂t)/(m−1)+min σ̂t). The interpolation points thus cluster around the most likely values
of σt. The starting guess values for the partial cross section, fj, are the conditional expecta-
tions of partial cross sections from each histogram bin. The weights are set to Berrut’s set,
{1,−1, 1, . . .}.

At this point, another layer of complexity can be added. The weights and interpolation
points can be shared among all the temperatures data must be tabulated at, while the
interpolation values fj can vary with respect to temperature. We find fits by solving:

min
s⃗igmat,w⃗,σ⃗x(Tt)

nt∑
t=1

nσ∑
i

P̃ (σt,i)
2
(
E
[
σx(Tt, σt,i)|σt,i

]
− b(σ⃗t, w⃗, σ⃗x(Tt), σt,i)

)
(5.54)

where σx(Tt, σt,i) is the random partial cross section on the histogram bin i. b(σ⃗t, w⃗, σ⃗x(Tt), x)
is the barycentric rational approximation formed by using interpolation points σ⃗t, weights w⃗,
and interpolation values σx(Tt), evaluated at the point x. The outer sum in Eq. 5.54 is over
temperature points Tt, and the inner sum is over σt,i, the midpoints of each histogram bin.
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Notably, the sum is weighted by the square of the probability density function estimated
on the histogram. Squaring is not per se necessary, but we found the resulting fits to be
most aesthetically appealing if using this choice. The black-box Nelder-Mead optimizer from
scipy provided reasonable results in a reasonable amount of compute time. The use of the
barycentric rational form appears to transform the problem to a space of coordinates which
is reasonably well-conditioned and lacking in local optima, as our experience using black-box
solvers to solve Eq. 5.54 has been generally positive. The same can not be said of directly
using a rational polynomial form.

After obtaining a fit, the parameters of this model offer excellent interpretability. The
interpolation points are where the conditional expectation curve is evaluated, and the inter-
polation values again are easy to interpret. On the the other hand, interpreting the weights
is a bit more opaque. At least, the majority of fit parameters have a clear physical meaning.

Because σt is defined as the sum of a capture, elastic scattering, and fission component,
we only need to store the fits to the capture and fission components. In sampling a value of
σt and its associated partials, the elastic scattering component can be found by subtracting
the capture and fission parts from the total.

Figures 5.12-5.14 show some examples of key nuclides’ conditional expectations of partial
cross sections that were fit by this procedure.

We call the modeling approximation of NIG-distributed σt values and E[σx|σt] approxi-
mated by barycentric rational forms AURA (Analytic Unresolved Resonance Algorithm).

5.4 Discussion

We have illustrated the applicability of fitting NIG distributions to the URR cross section
distribution over a variety of temperatures in Fig. 5.9 and 5.10. The NIG distribution
has been shown to fit the distribution of the cross section over a range of energies and
temperatures for a variety of nuclides. Fig. 5.9a shows the new method performing well for
235U at the lower energy end of the URR range.

Figs. 5.9b-5.9c demonstrate the applicability of our fitting technique to 238U over two
energies. The ratio of resonance width to spacing tends to increase as energy increases,
and these plots demonstrate this when placed in the context of Subsecs. 5.2.1-5.2.3. The
distribution at 20 keV has more clearly pronounced exponentially varying tails, while the
distribution at 97.5 keV exhibits more parabolic behavior over a wider range of σt.

In the case of 55Mn presented in Fig. 5.10c, we can observe that the single level Breit-
Wigner model clearly falls short to a greater extent than for most other isotopes in this case.
This particularly unphysical behavior deserves study in greater detail using the methods
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(a) 235U conditional expectation of σγ given σt
function at 2.2 keV.

(b) 235U conditional expectation of σγ given σt
function at 15 keV.

(c) 238U conditional expectation of σγ given σt
function at 20 keV.

(d) 238U conditional expectation of σγ given σt
function at 45.1 keV.

Figure 5.12: The E[σγ|σt] curves for 235U and 238U at two energies. The jagged lines are
estimates from the urrtools.py simulation, and the smooth lines are fits obtained by solving
Eq. 5.54.
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(a) 235U conditional expectation of σf given σt
function at 2.2 keV.

(b) 235U conditional expectation of σf given σt
function at 15 keV.

(c) 239Pu conditional expectation of σf given σt
function at 2.5 keV.

(d) 239Pu conditional expectation of σf given
σt function at 5.1 keV.

Figure 5.13: The E[σf |σt] curves for some key nuclides. Again, the jagged lines are estimates
from the urrtools.py simulation, and the smooth lines are fits obtained by solving Eq.
5.54.
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(a) 137Cs conditional expectation of σγ given σt
function at 1.7 keV.

(b) 135Xe conditional expectation of σγ given σt
function at 20 keV.

(c) 232Th conditional expectation of σγ given σt
function at 4 keV.

(d) 237Np conditional expectation of σγ given
σt function at 2 keV.

Figure 5.14: The E[σγ|σt] curves for some other key nuclides. Again, the jagged lines are
estimates from the urrtools.py simulation, and the smooth lines are fits obtained by solving
Eq. 5.54.

193



developed by [182], where otherwise somewhat small differences between the SLBW and
R-matrix-limited approaches had been shown for key actinides.

The visible steep dropoffs of the cross-section in Figure 5.10b can be explained using
Hwang’s model [194]. Hwang showed that when considering an isolated Breit-Wigner reso-
nance, a jump in the probability distribution before a steep dropoff can be observed. Figure
5.10b shows exactly this same effect but with the superposition of two independent spin
sequences each with their own maximum cross-section values. It appears to be the case that
neglecting this jump effect produces practically usable cross-section distributions for use in
reactor analysis.

The logarithmic derivatives of the cross section distribution tend to vary linearly in tem-
perature above a certain temperature. This would allow straightforward extrapolation to
high temperatures. We have not thus found a satisfactory intuitive mathematical argument
as to why this might be the case. One possibility stems from the fact that for sufficiently
high temperature, it can be shown that a SLBW resonance peak tends to decrease in a
manner proportional to 1/T . Making a change of variables in the probability distribution
for σt at zero kelvin to the high temperature case results in coefficients multiplying σt which
are proportional to temperature. Unfortunately, the highest values of the cross section seem
to originate not just from peaks in the cross section, but also exceptional cases where a few
resonances stack together to produce a large cross section. Future work could more rigor-
ously analyze this in order to potentially determine reasonable models for the temperature
dependence of the distribution parameters used to model the total cross section.

In [182] the capability to generate probability tables based on rigorous R-matrix theory
rather than summed SLBW resonances indicated small changes in the distribution around
the smallest σt values. However, the binning of the grid was not fine enough to evince
the actual structure of the probability distribution. We suspect that a distinct probability
distribution shape around σt ≈ 0 will arise when using finely gridded probability tables
generated by realistic resonance models rather than SLBW. Because the major behavior
in the large σt appears to be unchanged, the NIG distribution approach can likely still be
used—it just may need to be a mixture distribution with something describing the small
σt regime. Whether this has any practical impact in downstream nuclear computations is
an open question, and it appears to not influence criticality benchmarks in any meaningful
way. We therefore pose the problem of contriving a neutron transport problem sensitive to
small σt behavior–perhaps deep penetration shielding through a material described by URR
cross-sections.

The optimization problem Eq. 5.54 was solved with a black-box method from scipy, but
its structure would allow specialized optimization approaches. One that takes advantage of
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the barycentric rational form would be a coordinate-descent type approach. The fj values
can be found as a solution to a linear least squares problem; the wj can be found via an
linearization then SVD approach similar to that employed as an intermediate step in the AAA
algorithm, and the zj could be optimized with some other specialized method, although the
choice of that is not clear to us at present. One thing is for sure: two of the three subvectors
can be optimized in closed-form with an approach like this. The optimization solver would
likely converge faster and perhaps yield an even better fit on convergence.

5.5 Criticality Benchmark Results

To gauge the accuracy of our new method relative to the conventional approach we solved a
few standard criticality benchmarks. Many criticality benchmarks do not exhibit a difference
a few pcm due to URR effects, so we turned Mosteller [176] to find a few problems to evaluate
our new mtehod’s accuracy. To do so, we run each case with the standard approach to URR,
an approach only using averaged values from the pointwise grid, and lastly our new method
normalized and multiplying the pointwise grid. Our new method exhibits clear discrepancies
when not normalized and multiplying the pointwise grid as the current generation of ENDF
data does not intend for URR parameters to be used in this manner. Therefore this mode
of operation was not investigated here and only stands as a potentially high-performance
calculation mode to be explored for future use.

All runs used ENDF/B-VIII.0 data. With our new technique, the distribution fits and
barycentric fits were generated using ENDF/B-VIII.0 unresolved resonance parameters but
were not processed via the usual NJOY route. Instead our aforementioned GPU-accelerated
ladder sampling code employing the same algorithm as NJOY’s PURR was used. To nor-
malize the distributions and the conditional expectation curves, we precompute the means
of each parameter ahead of time at each energy and temperature point, then use those to
normalize any values pulled from those grids after multiplying by the pointwise cross-section.
This is exactly the same technique prescribed by modern nuclear data evaluations to use with
tabular probability distributions rather than our fitted ones.

We referred to [176] to find a few standard criticality benchmark problems exhibiting an
appreciable difference from unresolved resonance effects. Thermal spectrum problems tend
to be negligibly affected by URR effects, but some thermal benchmarks exhibit discrepancies
of a few pcm. The Big Ten benchmark and Zebra-8H are the two commonly solved problems
particularly influenced by URR effects. According to Mosteller’s work the most ZPR (Zero
Power Reactor) configurations also exhibit sensitivity to URR effects so we provide solutions
to the ZPR-3/53 and ZPR-6/10 cases. Lastly we also solve two thermal spectrum problems:
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PNL-10 and SHEBA-2 which are respectively a tank of water-reflected aqueously dissolved
plutonium nitrate and uranium dioxide dissolved in hydrofluoric acid. These are expected
to present only subtle differences, but ensure that the new method does not interfere with
results where probability tables otherwise do not make a difference.

Table 5.3 shows the associated eigenvalues and uncertainties for each benchmark problem.
The k eigenvalue computed without probability tables, with probability tables, and with
AURA are all presented. In all cases 20 inactive cycles with a total of 3000 batches were
employed. In all cases but ZEBRA-8H, 100,000 particles per generation were simulated. In
the case of ZEBRA-8H, only 10,000 neutrons per cycle were employed because this presented
an acceptable level of uncertainty relative to the impact that URR modeling has on this
problem. The original input files were designed for use with ENDF/B-VII.1 which includes
natural carbon as a separate nuclide, which ENDF/B-VIII.0 employed here does not include.
Because of this, we replaced all natural carbon with 12C, which may cause slight disagreement
of these results against others including 13C. The code to reproduce these results can be found
at https://github.com/gridley/openmc/tree/analytic_urr.

Table 5.3: Comparison of k eigenvalues for different URR modeling methods.

Benchmark No URR Modeling Probability Tables AURA

Big Ten 1.00133± 0.00004 1.00442± 0.00004 1.00414± 0.00004
ZEBRA-8H 1.01433± 0.00011 1.02330± 0.00011 1.02329± 0.00011
SHEBA-II 1.01206± 0.00006 1.01190± 0.00006 1.01197± 0.00006
PNL-10 0.99650± 0.00006 0.99659± 0.00006 0.99654± 0.00006
ZPR-3/53 0.97933± 0.00005 0.97953± 0.00005 0.97945± 0.00005
ZPR-6/10 1.00393± 0.00005 1.00377± 0.00005 1.00377± 0.00005

Table 5.4: Differences in k eigenvalues between modeling methods.

Benchmark AURA - Prob. Tables Prob. Tables - No URR

Big Ten −0.00028 +0.00309
ZEBRA-8H −0.00001 +0.00897
SHEBA-II +0.00007 −0.00016
PNL-10 −0.00005 +0.00009
ZPR-3/53 −0.00008 +0.00020
ZPR-6/10 0.00000 −0.00016
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5.6 GPU Performance

5.6.1 Implementation

We implemented the NIG distribution sampling and barycentric rational polynomial evalu-
ation in our CUDA-based version of OpenMC described in Chapter 3. There were no novel
changes required to evaluate the barycentric rational polynomials in a GPU-friendly way.
On the other hand, to implement Algorithm 13 for NIG distribution sampling to run effi-
ciently on GPU, we sought to obviate any accesses to global memory. Therefore, techniques
like ziggurat sampling are specifically avoided. Noticing that two samples from a standard
normal random distribution are required in Algorithm 13, the Box-Muller transform stands
out as the ideal technique under these constraints. The CUDA code which samples from the
NIG distribution that results is:

__device__ double sample_nig ( double alpha , double beta , double
mu, double de l ta2 , uint64_t∗ seed ) {

double u1 = prn ( seed ) ;
double u2 = prn ( seed ) ;
double R = std : : s q r t (−2.0 ∗ std : : l og ( u1 ) ) ;
double phi = 2 .0 ∗ M_PI ∗ u2 ;

// Two independent normal v a r i a t e s are obta ined :
double nv1 = R ∗ std : : cos ( phi ) ;
double nv2 = R ∗ std : : s i n ( phi ) ;

// Sample the i nv e r s e Gaussian d i s t r i bu t i o n , z
double mu_ig = std : : s q r t ( de l t a2 / ( alpha ∗alpha−beta ∗beta ) ) ;
double w = mu_ig ∗ nv1 ∗ nv1 ;
double c = 0 .5 ∗ mu_ig / de l t a2 ;
double z = mu_ig + c ∗ (w − std : : s q r t (w∗(4∗ de l t a2+w) ) ) ;
i f ( prn ( seed ) >= mu_ig / (mu_ig + z ) ) {

z = mu_ig ∗ mu_ig / z ;
}

// Sample the NIG d i s t r i bu t i o n , which i s a mixture over IGs
return std : : s q r t ( z ) ∗ nv2 + beta ∗ z + mu;
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Figure 5.15: Performance comparison of two URR modeling approaches on the H100 GPU
with Tramm’s Hoogenboom-Martin large benchmark at two temperatures.

}

5.6.2 Hoogenboom-Martin Model

We simulated the Hoogenboom-Martin large benchmark proposed by Tramm [116] on an
NVIDIA H100 GPU to test the new method. Figure ?? compares the particle processing rate
of the conventional probability table and our newly proposed method. Because temperature
interpolation introduces additional overhead as pointed out in Chapter 3 (in contrast to
CPU-based Monte Carlo with stochastic temperature interpolation), we also present results
with the reactor fuel temperature set to 1050K. The new URR modeling technique in this
case not normalized against values on a pointwise grid so some error is to be expected.
The model using standard probability tables calculated k = 1.0007 ± 6pcm, while the new
URR model calculated k = 1.0057± 6pcm, both obtained on the room temperature model.
Future iterations of this modeling technique will do away with the ENDF assumptions that
URR probability distributions should be normalized against values on a pointwise grid by
directly normalizing the distributions’ parameters. The per-event performance breakdown
is not presented for each case because the vast majority of the difference is in a single
event–cross-section lookup.
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Figure 5.16: Performance comparison of two URR modeling approaches on the H100 GPU
applied to the Big Ten criticality benchmark.

5.6.3 Big Ten Model

Figure 5.16 shows the calculation rate performance of the new method on the Big Ten
criticality benchmark as a function of the number of particles in flight. The calculation
runs exhibited some noise in the tracking rate; within this noise no substantial performance
difference can be discerned. This can be attributed to the small number of nuclides in
the problem. In this case, the scattered accesses to particle data are overpowering the
coalesced accesses to cross-sections. Moreover, the GPU was never quite saturated in this
run. Figure 5.17 shows the relative time taken by each event when using the new method,
which looks similar to when the old method is used. The surface crossing event takes a
relatively enormous amount of time at lower particle counts because the entire GPU stalls
when appending to the neighbor lists arrays. This gets amortized in later generations, but
is not properly captured by this performance testing.

5.7 Discussion

The results presented in Tables 5.3 and 5.4 suggest that the newly presented method, named
AURA, successfully models the unresolved resonance effect. Some discrepancies can be
observed in the cases with uranium present, which can be explained by the mismatch between
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Figure 5.17: Performance breakdown of the new URR model on the H100 GPU applied to
the Big Ten criticality benchmark.

NJOY and urrtools.py visible in Figure 5.11. For 235U in particular, the agreement between
our code and NJOY is poor, while simultaneously the other results match very well. This is
driven home by the perfect match on the reactivity value of the ZPR-6/10 problem which
was fueled entirely by plutonium. The impact of this disagreement is most pronounced in
the Big Ten problem, dominated by uranium.

Nonetheless, the mismatches are representative of problems with our underlying reso-
nance sampling code and not the AURA method itself. Its utility in GPU computing has
been conclusively proven on the Hoogenboom-Martin large benchmark as shown by Figure
5.15. The performance gains were not visible on the Big Ten benchmark when executed on
GPU–this comes as a result of having two orders of magnitude less nuclides to do cross-section
lookup operations on. GPU Monte Carlo neutron transport is most efficiently accelerated
when the bulk of the computational work is confined to particularly expensive cross-section
lookup calculations.

In an attempt to eliminate the discrepancy encountered on the Big Ten benchmark here,
we wrote a patched version of NJOY that samples unbiased χ2 random variables. While
a discernible effect on the shape of the probability tables themselves was observed, the
reactivity differences related to this change appear to be less than a few pcm. As [172] points
out, NJOY can be a difficult code to get agreement with due to its numerous approximations
and opaque, un-documented Fortran programming.
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The visible differences of the probability tables when sampling from unbiased χ2 distribu-
tions pertain to the inclusion of extreme values. Because the χ2 distributions for the partial
resonance widths come from a finite set of twenty values in NJOY, large values that push
the ratio Γn/Γt to its limit are never encountered. Extreme values in the cross-section occur
in NJOY and urrtools.py when multiple nearby resonances with large widths are stacked
together. This situation that NJOY misses may be unphysical, though, because of the level
repulsion effect [178] which tends to make many resonances being nearby less likely relative
to the NJOY asymptotic approximation where each spacing is governed by an independent
distribution.

One of the main reasons for our development of a separate resonance sampling code to fit
our new URR model to was our perception that NJOY failed to sample values in the tails of
the distribution sufficiently: crucial for properly fitting the α and β parameters. Instead, we
found that these tail values were simply missing due to the failure of PURR to sample large
values from χ2 distributions. In future work, the best approach in making comparisons to
criticality benchmarks and evaluating the merit of the AURA method will be to fit directly
to NJOY results. Nuclear data is tuned to match experiment, and NJOY has stood as a
keystone of that process for decades. We can practically acknowledge that nuclear data may
be tuned to match experiments that are analyzed using potentially flawed tools.

Although our code disagrees by -28 pcm on the Big Ten benchmark relative to probability
tables, the true k value for the benchmark is 1.00490±0.00080. Given the uncertainty on
the benchmark, it may be the case that our code used to generate resonance samples avoids
now-unnecessary numerical approximations (such as to the w(z) function) and therefore is
in fact closer to physical reality. After all, if the k measurement were a not-unlikely +1σ
sample over the real value of k, the actual k value would be 1.00410. This is 4 pcm below new
method’s result and 32 pcm below the prediction made using standard probability tables.

A possible source of systematic discrepancy in all current URR modeling pertains to
the incorporation of cross-sections not modeled in sampling resonances. At present, the
suggested appraoch is to generate probability tables in the form of multiplying factors on
the pointwise cross-section. These factors multiply the capture, fission, and elastic scatter-
ing cross-sections. When the capture multiplying factors are considered in NJOY’s PURR
module or our own code, only the (n, γ) is included. In actual calculations, the “capture”
contribution to the cross-section is considered to be the absorption component minus the fisi-
son component. Therefore, by multiplying this quantity, the charged particle cross-sections
are inadvertently also being multiplied by variations from resonant structure. We found
that this can create differences around 10 pcm in the Big Ten benchmark, but more in-depth
research on this topic is required.
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The results presented by Figure 5.16 show little performance benefit from the new ap-
proach on GPUs. In fact, attaining a 1.5 million particle/second tracking rate on this problem
is not particularly impressive. While GPUs in event mode can indeed deliver potent speedups
on problems dominated by cross-section lookup, problems with a small number of nuclides
are dominated by the totally uncoalesced, scattered memory accesses into the particle array,
as Figure 5.17 shows where the surface crossing kernel dominates the computation time. To
give a feel for how unimpressive that is on the H100 GPU, our Apple M3 Max attains a
tracking rate around 800,000 particles per second. In cases like this, a history-based kernel
would likely outperform on GPU.

Temperature correlations effects, discussed in depth in Walsh’s thesis [181], have not
been explicitly discussed so far. Suppose that a sample of the cross-section has been taken
at some fixed energy and temperature. If the temperature is adjusted by an infinitesimal
amount, we know from the continuity of Doppler broadening that the cross-section should
also change by an infinitesimal amount. Consequently, this rules the physicality of resampling
the cross-section at each temperature invalid. At present, our approach is to use the same
random number stream to compute the cross-section at each temperature. By doing so, the
continuity of cross-section changes with temperature is captured, and the correct marginal
distribution of σt is preserved at each temperature. To our knowledge, no mainstream studies
have measured the in-depth impact of URR model temperature dependence, so we have not
discussed this aspect in this work.

The NIG distribution given in Eq. 5.49 has a closed-form moment generating function
[196]. Recall that the moment generating function of a random variable X is E[etX ]. Con-
sequently, the attenuation of a large population of neutron through a sample of thickness t
can be calculated with the moment-generating function of the NIG distribution:

E[e−σtt = e
−µt+δ

(
γ−
√

a2−(b−t)2
)

. (5.55)

The average cross-section in the above case is E[σt] = µ+δβ/γ. Consequently, by measuring
the attenuation through a large number of samples of varying thicknesses and fitting the
four-parameter curve from Eq. 5.55, the parameters of the URR model can be extracted
from differential experiments without any recourse to intermediate probability tables or
resonance width information. We propose that future work expanding on our results here
interpret differential experiments through this lens.
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Chapter 6

Conclusion

In this thesis, we introduced the challenges associated with writing a performant, maintain-
able Monte Carlo neutron transport simulation code. The first chapter introduced the key
principles. The second chapter provided a contribution in the direction of algorithm analysis
for Monte Carlo methods on GPU. The third chapter introduced programming techniques,
optimizations, and novel developments associated with our CUDA-based version of OpenMC.
Next in chapter four we introduced a new algorithm for handling the resonance upscatter
effect, vital to calculating correct temperature feedbacks in fission reactors, without the ad-
dition of any extra data–this is a first in several ways. Lastly, we identified the performance
impact of unresolved resonance region modeling in Monte Carlo reactor neutronics simu-
lations, critically analyzed the requirements of unresolved resonance region modeling from
first principles, and presented the first practically usable analytic approach to unresolved
resonance region modeling and demonstrated its efficacy in GPU computing.

One drawback not examined in many papers so far in the GPU neutronics domain is
that reactor problems have received the vast majority of the attention due to the nature
of these problems focusing most of the computational effort on the cross-section lookup
operation. A variety of performant GPU Monte Carlo applications have been developed for
simulating reactors with hundreds of nuclides in the fuel. On the other hand, a relatively
small amount of attention has been directed towards Monte Carlo neutronics needs for
nuclear security, shielding, and other applications. In those cases, again, paradigm shifts in
the Monte Carlo algorithm may be desirable for optimal operation. At the moment, we are
unaware of any performant GPU-based continuous energy, full-physics Monte Carlo radiation
transport solver that has focused on shielding with variance reduction or coupled neutron-
gamma problems. Plenty of future work could be dedicated to addressing the computational
intricacies of these other problems.

To obtain performant code on non-reactor problems exhibiting a relatively smaller num-
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ber of nuclides, substantial performance improvements could be made by finding methods
that do not require pulling and pushing a large amount of particle data to and from global
memory. It is this un-coalesced pushing and pulling operation that explains the hybrid
history-event method presented in PRAGMA’s performance optimization paper [29]. In
that method, event queues are used, but a few events in a potentially divergent execution
pattern are still carried out after each event. Despite the thread divergence, performance
gains are still realized due to the high expense of pushing particle data back into global
memory and instead keeping it in registers. If a method to avoid the need for queue-based
event methods could be devised (for example by dramatically reducing the amount of data
needed to describe a particle), again, substantial performance benefits could likely be real-
ized. A particularly promising direction would be to implement a scheme similar to dynamic
re-coalescence available in recent ray-tracing programs for Nvidia GPUs in the method called
shader execution re-ordering [208].

If we were to embark again on writing a GPU-based Monte Carlo code scratch, we would
not write it with any intention of sharing large amounts of code with the corresponding CPU
codebase. Considering that both the optimal data structure layouts and algorithms differ so
much, this practically forces the programmer to write separate codebases. For example, we
ended up completely rewriting all the cross-section lookup code in a separate CUDA kernel.
On the other hand, all the physics code was shared between the CPU and GPU versions–this
may not be the best approach to performance.

Chapter 3 made clear the high code complexity of collision physics modeling. Ideally,
a single purely numerical collision formula could be devised. We are unaware of any re-
search that has sought to unify for example the double-differential cross-section of elastic
scattering and the Kalbach-Mann systematics under the same formula which can nonetheless
approximate either case. One admittedly computationally expensive approach to universal
approximation like this would be normalizing flows as explored and proven to work in [209].
However, the computational performance seen there was lackluster. A numerical method
inspired by the physical constraints might be able to address this. The fruit of this research
would be drastically simplified, non-divergent collision processing code that might allow the
benefits of our novel resonance upscatter method to be realized. Otherwise, the extreme
branching in the collision kernel tends to damp out any performance gains made to any
single branch.

Plenty more advances in data format can be made to improve performance of GPU Monte
Carlo applications. In Chapter 3, we showed the advantage of the windowed multipole
formalism over the pointwise method when interpolating between two temperatures. The
unionized grid method [69] has delivered impressive performance gains in CPU applications.
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Such a technique to optimize the accesses to windowed multipole data in principle could be
devised, and may present a tangible performance benefit for GPU computing at the cost of
a little bit of extra memory.
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Appendix A

GPU Rejection Sampling Experiment

1 // This calculates the distribution of the number of iterations

required for a warp

2 // of threads to complete a rejection sampling iteration.

3 #define WARPSIZE 32

4 #include <iostream >

5 #include <vector >

6

7 constexpr uint64_t master_seed {1};

8 constexpr uint64_t prn_mult {2806196910506780709 LL}; //

multiplication

9 constexpr uint64_t prn_add {1}; //

additive factor , c

10 constexpr uint64_t prn_mod {0 x8000000000000000 }; // 2^63

11 constexpr uint64_t prn_mask {0 x7fffffffffffffff }; // 2^63 -

1

12 constexpr double prn_norm {1.0 / prn_mod }; // 2^-63

13

14 // A linear congruential random number generator

15 __device__ __inline__ double prn(uint64_t* seed)

16 {

17 *seed = (prn_mult * (*seed) + prn_add) & prn_mask;

18 return (*seed) * prn_norm;

19 }

20

21 // Each block takes on its own rejection probability

22 template <unsigned Warpsize >
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23 __global__ void calculate_mean_iterations_required(double*

rejection_probabilities ,

24 double*

mean_iterations_required

,

25 double*

mean_squared_iterations_required

,

26 uint64_t* random_seeds)

{

27 int tid = threadIdx.x;

28 int n_outer_loops = 1000;

29 extern __shared__ int max_warp_iterations [];

30

31 double mean_result = 0;

32 double mean_square_result = 0;

33 double accept_prob = 1.0- rejection_probabilities[blockIdx.x];

34

35 for (int outer =0; outer <n_outer_loops; ++outer) {

36 int num_iterations = 0;

37 bool sample_not_obtained = true;

38 while (sample_not_obtained) {

39 double xi = prn(random_seeds+threadIdx.x+blockDim.x*blockIdx

.x);

40

41 // Surrogate rejection sampling:

42 if (xi < accept_prob) sample_not_obtained = false;

43

44 num_iterations ++;

45 }

46

47 max_warp_iterations[tid] = num_iterations;

48

49 // Now need to take the max num_iterations across the warp ,

because all threads would

50 // have waited on that last one. Parallel reduce using max as

the binary operator.

51
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52 if (Warpsize > 64) { // this statement should evaluate at

compile time

53 __syncthreads ();

54 if (tid < 64) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

55 max_warp_iterations[tid +64]);

56 }

57 if (Warpsize > 32) { // this statement should evaluate at

compile time

58 __syncthreads ();

59 if (tid < 32) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

60 max_warp_iterations[tid +32]);

61 }

62 __syncthreads ();

63 if (tid < 16) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

64 max_warp_iterations[tid +16]);

65 __syncthreads ();

66 if (tid < 8) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

67 max_warp_iterations[tid +8]);

68 __syncthreads ();

69 if (tid < 4) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

70 max_warp_iterations[tid +4]);

71 __syncthreads ();

72 if (tid < 2) max_warp_iterations[tid] = max(

max_warp_iterations[tid],

73 max_warp_iterations[tid +2]);

74 __syncthreads ();

75 if (tid == 0) {

76 max_warp_iterations[tid] = max(max_warp_iterations[tid],

77 max_warp_iterations[tid +1]);

78 mean_result = (outer * mean_result + max_warp_iterations [0])

/ (outer +1);

79 mean_square_result = (outer * mean_square_result +
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80 max_warp_iterations [0]* max_warp_iterations [0]) / (outer

+1);

81 }

82 }

83

84 if (tid ==0) {

85 mean_iterations_required[blockIdx.x] = mean_result;

86 mean_squared_iterations_required[blockIdx.x] =

mean_square_result;

87 }

88 }

89

90 int main(int argc , char* argv []) {

91

92 // Command line arguments are min rejection probability , max

rejection probability

93 if (argc != 4) {

94 std::cout << "Incorrect argument count. First input min

rejection probability , "

95 "max , then the number of linearly spaced probabilities to

check." << std::endl;

96 }

97 double min_r = std::stod(argv [1]);

98 double max_r = std::stod(argv [2]);

99 int n_probs = std::stoi(argv [3]);

100 if (min_r < 0 or min_r > 1) std::cerr << "MIN_R INVALID" << std

::endl;

101 if (max_r < 0 or max_r > 1) std::cerr << "MAX_R INVALID" << std

::endl;

102 if (min_r >= max_r) std::cerr << "BADLY ORDERED PROBABILITIES"

<< std::endl;

103

104 // Create the rejection probabilities to be used and move them

to device

105 double* dev_rej_probs;

106 size_t nbytes = sizeof(double) * n_probs;

107 std::vector <double > rejection_probabilities(n_probs);

108 double dp = (max_r -min_r)/(n_probs -1);

232



109 for (int i=0; i< n_probs; ++i)

110 rejection_probabilities[i] = min_r + dp * i;

111 cudaMalloc (& dev_rej_probs , nbytes);

112 cudaMemcpy(dev_rej_probs , rejection_probabilities.data(),

113 nbytes , cudaMemcpyHostToDevice);

114

115 // Allocate memory for results on device

116 double* mean_device;

117 double* mean_sq_device;

118 cudaMalloc (& mean_device , nbytes);

119 cudaMalloc (& mean_sq_device , nbytes);

120

121 // Allocate memory for random number seeds on device

122 uint64_t* device_rngs;

123 cudaMalloc (& device_rngs , sizeof(uint64_t) * n_probs * WARPSIZE);

124 std::vector <uint64_t > rngs_host(n_probs * WARPSIZE);

125 for (uint64_t i=0; i<n_probs*WARPSIZE; ++i)

126 rngs_host[i] = master_seed + i;

127 cudaMemcpy(device_rngs , rngs_host.data(),

128 sizeof(uint64_t) * n_probs * WARPSIZE ,

cudaMemcpyHostToDevice);

129

130 // Run the main kernel , one block per rejection probability

131 calculate_mean_iterations_required <WARPSIZE ><<<n_probs ,

132 WARPSIZE , sizeof(int)*WARPSIZE >>>(

133 dev_rej_probs , mean_device , mean_sq_device , device_rngs);

134

135 // Bring results back to host

136 std::vector <double > mean_iterations(n_probs);

137 std::vector <double > mean_squared_iterations(n_probs);

138 cudaMemcpy(mean_iterations.data(), mean_device , nbytes ,

cudaMemcpyDeviceToHost);

139 cudaMemcpy(mean_squared_iterations.data(), mean_sq_device ,

nbytes , cudaMemcpyDeviceToHost);

140

141 // And finally , print out the results

142 for (int i=0; i<n_probs; ++i)

143 std::cout << rejection_probabilities[i] << " "
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144 << mean_iterations[i] << " " <<

mean_squared_iterations[i] << std::endl;

145

146 cudaFree(dev_rej_probs);

147 cudaFree(mean_device);

148 cudaFree(mean_sq_device);

149 cudaFree(device_rngs);

150 }
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Appendix B

C++ Rational Approximation to w(z)

std::complex<double> faddeeva(std::complex<double> z)

{

z += std::complex<double>(1.31183j);

const auto zz = z * z;

constexpr std::array<std::complex<double>, 16> aa = {41445.0374210222,

-136631.072925829j, -191726.143960199, 268628.568621291j, 173247.907201704,

-179862.56759178j, -63310.0020563537, 56893.7798630723j, 11256.4939105413,

-9362.62673144278j, -1018.67334277366, 810.629101627698j, 44.5707404545965,

-34.5401929182016j, -0.740120821385939, 0.564189583547714j};

constexpr std::array<std::complex<double>, 16> bb = {7918.06640624997, 0.0,

-126689.0625, 0.0, 295607.8125, 0.0, -236486.25, 0.0, 84459.375, 0.0,

-15015.0, 0.0, 1365.0, 0.0, -60.0, 0.0};

return (((((((((((((((aa[15] * z + aa[14]) * z + aa[13]) * z + aa[12]) * z +

aa[11]) * z + aa[10]) * z + aa[9]) * z + aa[8]) * z

+ aa[7]) * z + aa[6]) * z + aa[5]) * z + aa[4]) * z +

aa[3]) * z + aa[2]) * z + aa[1]) * z + aa[0]) / ((((((((zz +

bb[14]) * zz + bb[12]) * zz + bb[10]) * zz + bb[8]) * zz

+ bb[6]) * zz + bb[4]) * zz + bb[2]) * zz + bb[0]);

}
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Appendix C

Derivation of Eq. 4.20

The forthcoming discussion has not been made mathematically rigorous for sake of brevity
and the context of a nuclear engineering journal. We begin by defining the auxiliary complex
function F(z):

F (z) = ez
2

w(z, x) (C.1)

The complex line integral theorem can then be applied when ℑ[z] > 0:

F (z)− F (0) =
∫ z

0

dF

dz
|z=z′ dz

′ (C.2)

Computing dF
dz

and inserting then reveals:

ez
2

w(z, x)− w(0, x) =
∫ z

0

(
2z′ez

′2
w(z′, x)− ez′2 i

π

∫ x

−∞

e−t2 dt

(z′ − t)2

)
dz′ (C.3)

where the linearity of integration has been employed, and the interchange of differentiation
and integration has also been used. The innermost integrals can now be computed exactly,
carrying the z′ through to the integral defining the incomplete Faddeeva function. This
results in:

ez
2

w(z, x)− w(0, x) = i

π

(∫ z

0

ez
′2
e−x2

x− z′ dz′ −√π(1 + erf(x))
∫ z

0

ez
′2
dz′
)

(C.4)

Recalling that the Faddeeva function can be defined as

w(z) = e−z2
(
1 +

2i√
π

∫ z

0

et
2

dt

)
, (C.5)

we can identify w(z) as the trailing term of Eq. C.4. The term w(0, x) must be interpreted
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ℜ[z′]

ℑ[z′]

z

i ∞ i∞+ ℜ[z]

Figure C.1: Modified contour used to cancel exponential integral in Eq. C.6. The contribu-
tion from the top line is zero.

in a principal value sense, which results in a contribution in the form of a Heaviside function.
The following expression then results:

w(z, x) = e−z2

(
−1

2
(Ei(−x2) + i

π
e−x2

∫ z

0

ez
′2

x− z′ dz
′
)
+

1

2
(1 + erf(x))(w(z)− e−z2) + h(x)e−z2 . (C.6)

This result could perhaps be used for numerical calculations of w(z, x). However, it suffers
the shortcoming that the exponential integral term goes to infinity for x = 0, which is
cancelled out by the integral term. However, w(z, x) is well-defined at x = 0, and the
addition of branching logic to numerical routines to handle this case would be cumbersome.
The expression can be made more amenable to numerical approximation with some further
simplification.

The integral term goes from 0 to z, and the integrand encloses no poles of the following
path whenever x ̸= 0. As such, a change of integration path is employed: the contour of Fig.
C.1 results in a convenient cancellation of terms. The top leg of the contour is zero from the
et

2 term, resulting in: ∫ z

0

et
2

x− t dt =
∫ i∞

0

et
2

x− t dt−
∫ i∞

z

et
2

x− t dt (C.7)
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A little bit of algebra shows that:∫ i∞

0

et
2

x− t dt =
1

2
ex

2 (−iπ(erf(x)− sign(x)) + Ei(−x2)
)

(C.8)

The sign function term ends up cancelling out the Heaviside term upon substitution of Eq.
C.7 back to Eq. C.6. The second term in Eq. C.7 easily can be transformed via the change
of variables t′ = −it to the integral in Eq. 4.20, thus yielding Eq. 4.20.
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Appendix D

Derivation of Eq. 4.50

The goal is to find the smallest n such that

xnE1(x)

n!En+1(x)
< 1 (D.1)

The variation of the left hand side function of Eq. D.1 as n increases, for a constant value of
x, has been shown to be first increasing from one, reaching a maximum, and monotonically
decreasing from that point, never becoming negative [153]. Firstly, the exponential integrals
are replaced with the equivalent upper incomplete gamma function:

En(x) = xn−1Γ(1− n, x) (D.2)

so the equation becomes:
Γ(0, x) = n!Γ(−n, x) (D.3)

Using the asymptotic formula for the upper incomplete gamma function Γ(s, x) → xs−1e−x

gives this approximation to solve:
xn ≈ n! (D.4)

Which can be solved approximately by first inserting Stirling’s formula:

xn ≈
√
2πn

(
n

e

)n

(D.5)

Taking the nth root results in
ex ≈ (2πn)

1
2nn (D.6)
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the second term on the right can be approximated by expanding the exponential, for large
n:

ex ≈ (1 +
1

2n
log(2πn))n (D.7)

This can be solved exactly in terms of the Lambert W function:

n ≈ 1

2
W

(
e2ex

π

)
(D.8)

The asymptotic property of the Lambert W function that W (z) ≈ log z − log log z is then
used to obtain Eq. 4.50.
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Appendix E

Asymptotic Approximation for R(m, z)
of Eq. 4.32

An efficient approximation can be found by grouping the integrand as:

R(m, z) =

∫ ∞

0

f (0)(t,m) sin(2zt) dt = − 1

2z

∫ ∞

0

f (0)(t,m)
∂

∂t

[
cos(2zt)

]
dt (E.1)

where

f (0)(t,m) =
e−t2

t2 +m2
.

Integrating the rightmost expression expression in Eq. E.1 by parts repeatedly results in a
divergent series approximation of the form:

R(m, z) =
f (0)(0,m)

2z
+
f (2)(0,m)

8z3
+
f (4)(0,m)

32z5
+
f (6)(0,m)

128z7
+ · · · (E.2)

where f (n)(t,m) denotes the nth derivative of f (0)(m, t) with respect to t. Some of the
subsequent values evaluated about t = 0 are:

f (2)(0,m) = −2(1 +m2)

m4
(E.3)

f (4)(0,m) =
12(2 + 2m2 +m4)

m6
(E.4)

f (6)(0,m) = −120(6 + 6m2 + 3m4 +m6)

m8
(E.5)

f (8)(0,m) =
1680(24 + 24m2 + 12m4 + 4m6 +m8)

m10
(E.6)
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While seemingly progressing without a clear pattern, after a considerable amount of staring
at these expressions, a simple recursive formula can be obtained to compute these values:
prime for computer implementation. Consider the sequences an, cn ∈ R defined by

a0 = m−2; c0 = 2 (E.7)

and
an+1 =

2n(2n− 1)an + cn
m2

; cn+1 = (4n+ 2)cn . (E.8)

Using this, one can show that f (2n)(0,m) = an. This allows for easy evaluation of the
asymptotic series of Eq. E.2. Numerical experimentation has shown this to be an excellent
approximation with a maximum error around 10−6 when |z| = 5 and |m| = 1, retaining only
five terms. The error rapidly falls from there as |z| → ∞ and |m| → ∞.
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Appendix F

Asymptotic Approximation for J(z, x) of
Eq. 4.51

Compared to the asymptotic approximation for the R(m, z) integral, a clean expression for
simple computer code is not available to our knowledge. Obtaining an asymptotic expression
thus relies on access to a computer algebra system. Finding this starts by applying a simple
change of variables to Eq. 4.51 to find:

J(z, x) =

∫ ℑ[z]

0

e−t2e2iℜ[z]t dt

i(ℜ[z]− x)− t (F.1)

Where it becomes clear that numerical difficulty from expanding the exponential term origi-
nates from the e2iℜ[z]t modulation. This is the term to isolate to obtain the correct asymptotic
behavior as the integrand becomes increasingly oscillatory. The standard repeated integra-
tion by parts procedure can then be applied. This is pure tedium, so we simply report the
C++ code which evaluates five terms below.

1 const std::complex <double > pp1 = 6.0 + m2*(6.0 + 3.0*m2) +

2 zr*(m*(-3.0 - 3.0*m2) +

3 zr*(m2*(2.0 + 2.0*m2) +

4 zr*( -2.0*m2*m + 4.0*m2*m2*zr))) +

5 zi*(zr *(3.0* ii + m2* (3.0* ii - 6.0*ii*m2) +

6 zr*(m*( -4.0*ii - 4.0*ii*m2) +

7 zr*(m2 *(6.0* ii - 4.0*ii*m2) - 16.0*ii*m2*m*zr))) +

8 zi*(6.0 + m2*(6.0

9 - 12*m2) + zr*(m*(-3.0 - 18.0* m2) +

10 zr*(-2 - 4.0*m2*m2 + zr*(m*(6.0

11 - 16.0* m2) - 24.0*m2*zr))) + zi *(40.0* ii*m2*m + zr *(3.0* ii

243



12 + m2 *(18.0* ii + 4.0*ii*m2) + zr*(m*( -4.0*ii + 16.0*ii*m2) +

13 zr*( -2.0*ii + 24.0*ii*m2 + 16.0*ii*m*zr))) +

14 zi*(3.0 + m2 *(48.0 +

15 4.0*m2) + zi*(m*( -24.0*ii - 16.0*ii*m2) +

16 zi*(-4.0 - 24.0*m2 +

17 zi *(16.0* ii*m + 4.0*zi + 4.0*ii*zr) +

18 ( -16.0*m - 4.0*zr)*zr) +

19 zr*( -24.0*ii*m2 + ( -16.0*ii*m - 4.0*ii*zr)*zr)) +

20 zr*(m*(6.0 +

21 16.0*m2) +

22 zr*(-2.0 + 24.0*m2 + zr *(16.0*m + 4.0*zr)))))));

23 const double pp2 = (-6.0 + m2*(-6.0 - 3.0*m2) +

24 zr*(m*(3.0 + 3.0*m2) + zr*(m2*(-2.0 -

25 2.0*m2) + zr *(2.0* m2*m - 4.0*m2*m2*zr))))/(m2*m2*m);

26

27 // Note:std::exp(zi*(zi - 2.0*ii*zr)) = exp(-z^2) / exp(-zr^2)

28 result =

29 (pp2 + pp1 / (cache.emz2 / cache.emrz2 * std::pow(m - ii * zi,

5))) /

30 (8. * std::pow(zr, 5));

244



Appendix G

Root Finding Bootstrap Function

1 double rootfinding_bootstrap_guess(double xi,

2 double apprx_0_cdf , // approx CDF at x=0

3 double dcdx , // approx PDF at x=0

4 double jump , // probability jump at resonance

5 std::complex <double > z) {

6

7 // Note: can approximate length as e^{-z^2} * 3 Im[z]

8 double yjumplo = 0.5 * (std::erf(z.real() -

9 1.5 * z.imag()) + 1.0);

10 double yjumphi = 0.5 * (std::erf(z.real() +

11 1.5 * z.imag()) + 1.0);

12

13 if (xi <= apprx_0_cdf) {

14 if (yjumphi > 0.5 && yjumplo < 0.5) {

15 jump *= (0.5 - yjumplo) / (yjumphi - yjumplo);

16 yjumphi = 0.5;

17 } else if (yjumplo > 0.5) {

18 yjumplo = 0.0;

19 yjumphi = 0.0;

20 jump = 0.0;

21 }

22 if (jump > apprx_0_cdf) jump = apprx_0_cdf;

23 const double d = yjumphi - yjumplo;

24 const double sout = (apprx_0_cdf - jump) / (0.5 - d);

25 const double sinv = jump > 0.0 ? d / jump : 0.0;

26 if (xi >= sout * yjumplo + jump) {
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27 const auto r = sout * yjumplo + jump;

28 const auto a = (r - dcdx * (yjumphi - 0.5) - apprx_0_cdf)

29 / std::pow(yjumphi - 0.5, 2);

30 return 0.5 * (-dcdx + std::sqrt(std::pow(dcdx , 2) -

31 4.0 * (apprx_0_cdf - xi) * a)) / a + 0.5;

32 } else if (xi > sout * yjumplo) {

33 return (xi - sout * yjumplo) * sinv + yjumplo;

34 } else {

35 if (sout > 0.0)

36 return xi / sout;

37 else return 0.5 * yjumplo;

38 }

39 } else { // xi > apprx_0_cdf

40 if (yjumplo < 0.5 && yjumphi > 0.5) {

41 jump *= (yjumphi - 0.5) / (yjumphi - yjumplo);

42 yjumplo = 0.5;

43 } else if (yjumphi < 0.5) {

44 yjumplo = 1.0;

45 yjumphi = 1.0;

46 jump = 0.0;

47 }

48

49 // Clip innapropriately large jumps

50 if (jump > 1.0 - apprx_0_cdf) jump = 1.0 - apprx_0_cdf;

51 const auto d = yjumphi - yjumplo;

52 const auto sout = (1.0 - jump - apprx_0_cdf) / (0.5 - d);

53 const auto sinv = jump > 0.0 ? d / jump : 0.0;

54 const auto thresh1 = sout * (yjumplo - 0.5) + jump +

apprx_0_cdf;

55 const auto thresh2 = sout * (yjumplo - 0.5) + apprx_0_cdf;

56

57 if (xi >= thresh1)

58 return (xi - thresh1) / sout + yjumphi;

59 else if (xi > sout * (yjumplo - 0.5) + apprx_0_cdf)

60 return (xi - thresh2) * sinv + yjumplo;

61 else {

62 const auto a = (thresh2 - dcdx * (yjumplo - 0.5) -

63 apprx_0_cdf)/std::pow(yjumplo - 0.5, 2);
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64 return 0.5 * (-dcdx + std::sqrt(std::pow(dcdx , 2) -

65 4.0 * (apprx_0_cdf - xi) * a)) / a + 0.5;

66 }

67 }

68

69 UNREACHABLE ();

70 }
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